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How to solve the challenge of image retrieval?
It would be great to have an “image to text” tfranslator.

General dictionary seems impossible
O LSCOM: 449 visual concepts over 61901 shots (TrecVID'05)

but... maybe a simpler dictionary could help to improve
the classical text-based image-retrieval.
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ImageCLEF 2008

Visual Concept Detection Task (VCDT)
O How to “translate” an “image” into “text” ?
O Forest of Fuzzy Decision Trees (FFDT)

Photo Retrieval Task (PHOTO)
O How to exploit a simple translator ?
O Text based refrieval filtered by VCDT

WikipediaMM Task (Wikipedia)
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Visual Concept Detection Task

| Person || Animal |

(.e. river | Sky | Day | sac;i\(jl ;); Buildings
e. river, A :

17 concepts (classes) - 2K training images — 1K for test
Learning perspective: multi-class and multi-label problem.

Concepts are presented in a simple hierarchy
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FFDT Learning diagram
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Visual descriptors:
image split into 9 zones

==============> colors: HSV 4x3x3

-------- > colors: HSV 8x3x3
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Official Results VCDT

53 runs for 11 teams (LIP6, LSIS, CEA-LIST, XRCE, IPAL...)

Equal Error Rate 24.6% - AUC: 82.7% =>3rd of 11

UPMC-LIP6-B50trees100pc.run.sorted, EER: 0.245468, AUC: 0.827417
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EER => Normalized Score (NS)

EER is not adapted when we have a class decision

Normalized Score (NS)

UPMC-LIP6-B50trees100pc25.run.sorted, EER: 0.261992, AUC: 0.570931 .
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Concept are related (theory)

Indoor Outdoor
Beach
Person || Animal Water Sky Day Road or || Buildings Vegetation
(i.e. river, pathway . |_
lake, etc) L Sunny Night Mountains Tree
Partly
| Cloudy
— Overcast
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How we discover the relations ¢

EXCLUSION
O We study the co-occurrence matrix
O When two concepts never appear together -> exclusion

IMPLICATION (or necessity)

O (A=>B) is equivalent to (not B or A)

O We build a matrix of presence vs. absence (COOCNEG)
O When never (Band not A) -> (notBorA)->A=>B
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How to use exclusion and

Implication ¢

Exclusion

O COOC(A,B)=0

O before: Outdoor=0.8 and Indoor=0.5

O after: Outdoor=0.8 and Indoor=0

O IF score(l,A)>score(l,B) THEN score(l,B)=0 ELSE score(l,A)=0

Implication

O COOC(A,non B)=0

O before: Cloudy=0.8 and Sky=0.5

O aofter: Cloudy=0.8 and Sky=0.8

O score(l,B)=max(score(l,A),score(l,B))
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Results (Normalized Score)

0.470
0.482
FFDT
X 0.476
X X 0.478

Exclusion and Implication improve only slightly the NS ¢!
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General behavior

Normalized Score Curves
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ImageCLEF 2008

Photo Retrieval Task (PHOTO)

O How to exploit a simple translator ?
O Text based refrieval filtered by VCDT
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Photo retrieval task

20K Images

O the same collection as for VCDT

O associated to a textual description

O semi-structured : fitle, location, date, visual description, ...

39 Topics

O Semi-structured textual description: <title>, <narr>, <cluster>
O Image examples

2008 edition
O focus on diversity

O the measures were P20 and CR20
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Photo retfrieval : our approach

Text retrieval
O tdf-idf, language model (LM)

From topics to queries
O textual queries using title + narr + narr-"not".

Filter the resulting ranked list by using the FFDT (VCDT)
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Topic 58: Yseals near water”

i

TOPIC 58 : seals near water

CLUSTER BY : country

TOPIC NARRATIVE : Relevant images will

show seals (or more specific: fur seals, ear

seals and sea lions) at a body of water (seq,

lake, etc.). The water has to be visible for an ‘
image to be relevant. Images of seals with

no water visible in the image are not
relevant. Images of water but without seals

are not relevant either.
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Which VC should we use®?

<title>church with more than two towers</title>
<cluster>city</cluster>

<narr>Relevant images will show a church, cathedral or a
mosque with three or more towers. Churches

with only one or two towers are not relevant. Buildings that
are not churches, cathedrals or mosques

are not relevant even if they have more than two
tfowers.<narr>

Method VCDT: find the “concept” in the <title>

Method VCDTWN: find the “concept” in a list of synonyms
(Wordnet) of the <title>
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WordNet expansion

O TOPIC 5 : animal swimming
O Animal: organism, plankton, mascoft, fungus, ...
O Swimming: bathe, diving, floating, surfing, water sport, ...
O Use the VCDT-animal & VCDT-water

Rank 4 Rank 11
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How we apply a filter on a liste

After a text query: list of ranked images
O "Good"” images are highly ranked
O Should we filter them oute

O Afwhat VCDT degree we decide that the concept is
presente

Since ImageClef focus on P20 and CR20
O We filter the first the 50

O Andre-infroduced them after rank 50.
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near water’ —rank 1&2

water concept
detected -> not filtered

Ranlk 2: water concept was
not detected -> filtered to
rank 50
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“seals near water” — first error

Rank 3: water concept was
not deftected -> filtered to
rank 51!
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“seals near water” —rank 3 to ...
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“seals near water” — second error

water concept was
detected -> not filtered!
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“seals near water”

water concept was
detected -> not filtered !!

Was considered by
ImageClef as WRONG !1?
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Results

Texte Concept All 39 topics Only topics modified by filtering
Filtering
VCDT | WN | P20 (gain %) | CR20 (gain %) | Nb of topics | P20 (gain %) | CR20 (gain %)
LM 0.185 (-) 0.247 (-) 11 0.041 (-) 0.090 (-)
25 0.148 (-) 0.254 (-)
0.195(+6) 0.257(+4) 11 0.077 (+88) 0.126 (+40)
X X 0.176(-5) 0.248(+1) 25 0.134 (-9) 0.257 (+1)
TF 0.250 (-) 0.300 (-) 11 0.155 (-) 0.161 (-)
-IDF 25 0.210 (-) 0.305 (-)
X 0.269(+8) 0.313(+5) 11
X X 0.258(+4) 0.293(-2) 25 0.226 (+8) 0.294 (-4)

VCDT - 11 topics modified and 7 VC were used

VCDT+WN - 25 topics modified (some x Times) and 9 VC were used
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VCDT filtering vs VCDT+WN
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Conclusion

Some Visual Concepts can be learned

O Exploiting relations between concepts only slightly improve
the results

O Small simple “image2concept translator” is possible

Text-based image retrieval can benefit from such a
translator

O For some queries strong improvement in terms of P20

O Difficulty: how to detect in the query (text) the right visual
concepte
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Other results... diversity

Why diversity is interestinge

UPMC/LIPé

O Visual diversity based on pre-segmenting the colors space
O Slight improvement of CR20

AVEIR

O Diversity by the fusion of different runs (teams)

O Several fusion strategies were compared

O P20: AVEIR better than best individual - CR20: AVEIR close.
O 3rd best team at ImageClefPhoto

http://aveir.lipé.fr
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Thank you for your aftention
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