

A generic Framework for the Evaluation of contentbased Image and Video Analysis Tasks in the Core Technology Cluster of THESEUS

Peter Dunker, Ronny Paduschek Fraunhofer Institute for Digital Mediatechnology Ilmenau, Germany

Aarhus, 16.09.2008 nwk@idmt.fraunhofer.de

- » THESEUS
- » Image and Video analysis in THESEUS
- » Contests
- » Concept
- » Evaluation Framework
- » First evaluations
 - » Image Segmentation
 - » Face Detection
- » Conclusions

- » German research program (financed by Federal Ministry of Economy and Technology (BMWi))
- » Focus: algorithms and web-based infrastructure for acquiring, processing and seeking of knowledge available from the web
 - » Core Technology Cluster (CTC)
 - » Use cases
- » research on

text recognition, privacy, ontologies, user interfaces, video and image analysis, **evaluation strategies**, visualization techniques, machine learning

» Duration: 5 years

- » Workpackage: Evaluation: Picture Analysis
- » Lead: Fraunhofer Institute for Digital Mediatechnology (IDMT)
- » Image and Video Analysis:
 - » Image and video identification
 - » Image and video similarity retrieval
 - » Temporal shot, sub shot, scene change detection
 - » Video genre detection
 - » Video event detection
 - » Image segmentation and spatio-temporal segmentation in videos
 - » Image scene classification and annotation
 - » Named entity retrieval
 - » Face detection

» ...

Goals for evaluation

- » Measure improvement over time
- » Comparison to other state-of-the-art algorithms
- » Test with independant and unknown data
- » Evaluation criteria:
 - » Recognition rates
 - » Processing times
 - » Scalability
 - » Robustness (e.g. regarding distortions)
- » Functional range:
 - » e.g. number of categories in categorization tasks
 - » Supported formats, use of standards

CONTEST	AREA	TASK
PASCAL:	Image	VOC 2008:
Visual Object		1) Classification (presence / absence of objects)
Class Challenge		2) Object Detection
		3) Pixel-wise object segmentation
		4) Person Layout
Caltech Challenge	Image	Caltech 2007: Classification (1 out of 256)
ImageCLEF	Cross Language	ImageCLEF 2008:
	Image Retrieval	1) Photographic Retrieval
		2) Medical Retrieval
		3) Photographic Concept Detection
		4) Automatic Medical Image Annotation
		5) Image Retrieval from a Collection of Wikipedia Images

Multimedia Analysis Contests

CONTEST AREA TASK ImagEVAL 2006: ImagEVAL Image 1) Recognition of transformed images 2) Text/Image mixed research 3) Detection of text areas 4) Detection of objects 5) Semantics Extraction **Berkely** Image segmentation and boundary detection Image Segmentation **Benchmark TRECVid** Video TRECVid 2008: 1) Surveillance event detection pilot 2) High level feature extraction 3) Search 4) Rushes summarization 5) Content-based copy detection **VideOlympics** Video Showcase: Video Retrieval

Task of IDMT in Theseus

- » Evaluation with international accepted databases and standards
- » Independent evaluation with data that is not available for the algorithm developers
- » Creation of testdata with standard distortions
- » Comparison to state-of-the-art algorithms
- » Development of a generic Evaluation Framework
- » Eventually organizing tasks in benchmark related to research in Theseus

Evaluation Framework - Concept

- » A generic evaluation framework will be developed to handle and measure all evaluations
- » The key features of the framework are:
 - » easy extension to new formats and measures
 - » storing previous test results for comparison and measurement of improvements
 - » sophisticated visualizations for interactive reviewing
 - » generation of descriptive test results.

ESEUS

internetbasierte Wissensinfrastruktur

Evaluation Framework - Concept

neue internetbasierte Wissensinfrastruktur

IESEUS

» 3 Test Cases:

- » 1) Retrieval
 - » Input: Multimedia Document
 - » Output: list of similar documents
 - » \rightarrow search scenarios
- » 2) Keyword or Segment Indexing
 - » Input: one media item
 - Output: description of item (holistic annotations, segment information, segment-based annotations)
 - » \rightarrow face/object detection, classification
- » 3) Multimedia Enhancement
 - » Input: multimedia document
 - » Output: enhanced multimedia document
 - » \rightarrow automatic distortions correction

Evaluation Framework

Evaluation: Image Segmentation

Forschungsprogramm für eine neue internetbasierte Wissensinfrastruktur

- » Test Data
 - » Berkeley Segmentation Dataset (1)
 - » 100 images for tests
 - » 5-10 ground truth segmentations per image
 - » [Another test corpus with about 1000 images and 1 ground truth segmentation per image] → to be extended
- » Evaluation Measures
 - » 1) boundary-based measure from Berkeley Segmentation Benchmark (1)
 - » 2) region-based measure based on *Normalized Hamming Distance* (2)
- » (1) D. Martin, C. Fowlkes, D. Tal, and J. Malik, "A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics," *Proc. Eighth Int'l Conf. Computer Vision*, vol. 2, pp. 416–423, 2001.
- » (2) Q. Huang and B. Dom, "Quantitative methods of evaluating image segmentation," *IEEE International Conference on Image Processing*, vol. 3, pp. 53–56, 1995.

Evaluation: Image Segmentation

- » Why integrating an already existing benchmark?
 - » Ground Truth
 - » The ground truth was carefully collected
 - » Subjectivity was minimized
 - » Different granularity of segmentations are present
 - → mirror different user expectations
 - » Comparison
 - » Results are published on a website
 - » Comparison from THESEUS to other segmentation results
 - » Using same testing conditions

Normalized Hamming Distance

» Segmentation S , Ground Truth G

$$S = \{R_1^1, R_1^2, ..., R_1^m\} \qquad G = \{R_2^1, R_2^2, ..., R_2^n\}$$

» Directional Hamming Distance:

$$D_H(S \Rightarrow G) = \sum_{R_2^i \in G} \sum_{R_1^k \neq R_1^j, R_1^k \cap R_2^i \neq \emptyset} |R_2^i \cap R_1^k|$$

» Normalized Hamming Distance:

$$p = 1 - \frac{D_H(S \Rightarrow G) + D_H(G \Rightarrow S)}{2 * |S|}$$

» Missing Rate:

$$E_R^m = \frac{D_H(S \Rightarrow G)}{|S|}$$

False Alarm Rate:

$$E_R^f = \frac{D_H(G \Rightarrow S)}{|S|}$$

Evaluation: Image Segmentation

Graphical User Interface

Evaluation: Face Detection

- » How to relate bounding box for detected face and ground truth?
 - » Position of BB: Euclidean Distance $\Delta dist_xy < \xi w_1$, with $\xi = 0.5$
 - » Relation of sizes of BB:

$$w' = \frac{|w_2 - w_1|}{w_1}$$
 $w' < \psi$, with $\psi = 0.4$

Evaluation: Face Detection

Result visualization:

					th_gui							
Evaluation												
detection												
#33		032.jpg		-	TPos	FPos	FNeg	MultiTP		Results Sum	mary	
				1	2	0	0	0	•		1-	
				2	2	0	0	0		GroundTruth	943	
				3	2	0	0	0		ALL LIT D	705	
	_	-	The second second	4	3	0	0	0	-	(Multi)I ruePos	705	
CAN ACTIVATION OF			100	5	2	0	0	0		FalsePos	92	
COMPANY OF THE OWNER	-	111	and the second second	6	3	0	0	0		Taiseros	52	
of the Same Sector		E C		7	9	0	0	0		FalseNeg	238	
				8	1	0	0	0				
	-24		5	9	2	0	0	0		Precision	0.88457	
10 C	8			10	2	0	1	U		(
N N			100 100	11	3	0	0	0		Recall	0.74763	
		1		12	2	0	0	0		DotoctTimo	229 559	
In a second		2		13	2	0	0	0		Detectrime	229.550	
	Ma		Cherry I.	15	1	0	0	0		Choose Result Directory		
			and the				it Directory					
				Save Resu	Save Results							
All	1			18	1	0	0	ň				
				19	3	Ő	ĩ	ň		Save Drawed	Images	
				20	2	Ő	1	Ő				
				21	1	0	0	Ő				
Last Imaga	33	Coll	Vert Image	22	2	0	0	0				
	00		inext initige	23	1	0	1	0				
Draw Ground Truth Image Dra			tacted Faces	24	3	1	0	0				
	acti p		lected races	25	1	0	0	0				
Ground	Truth		2	26	1	0	0	0				
True Por	ritions		2	27	2	0	0	0				
The FOS	sicives			28	1	0	0	0				
False Po	sitives		0	29	1	0	0	0				
False Ne	gatives	-	0	30	0	1	1	0	•	Choose Image	Directory	

Future Developments

- » Generic evaluation framework for evaluation of image and video analysis algorithms
 - » Complemented throughout THESEUS
- » No duplication of existing contests
 - » Submit algorithms to contests
 - » E.g. image classification to VOC 2008
 - » Video identification to TRECVid (?)
 - » Organize task in Benchmark

Thank you

http://theseus-programm.de/

http://www.idmt.fraunhofer.de