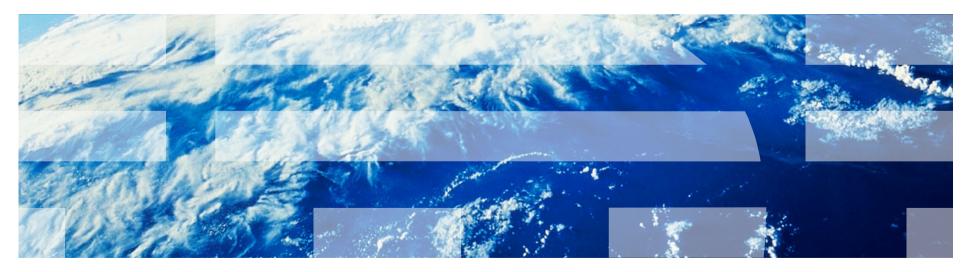
Mani Abedini and Rahil Garnavi	- 4
Amir Geva and Asaf Tzadok	- I
Liangliang Cao, Noel Codella, Jonathan H. Connell, Michele Merler , Quoc-Bao Nguyen, Sharathchandra U. Pankanti and John R. Smith	- T.

- Australia
- Haifa
- TJ Watson

IBM Multimedia Analytics @ ImageCLEF2013



http://www.imageclef.org/2013/medical

© 2013 IBM Corporation

Overview

- IBM Multimedia Multi-Lab group @ ImageCLEF 2013
- Modality Classification task
 - -Approaches
 - -Results
- Case-based retrieval task
- Compound Image Segmentation Task
- Conclusions

IBM Multi-Lab Group @ ImageCLEF 2103

In 2013: multi-lab collaboration to solve the tasks

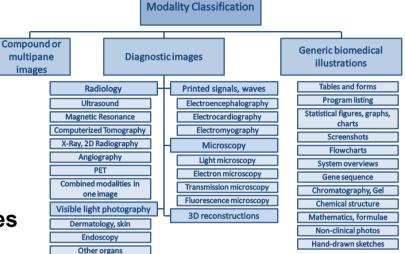
- Australia and TJWatson on Modality Classificationn and Retrieval tasks
- Haifa involved in Compound Figure Segmentation task

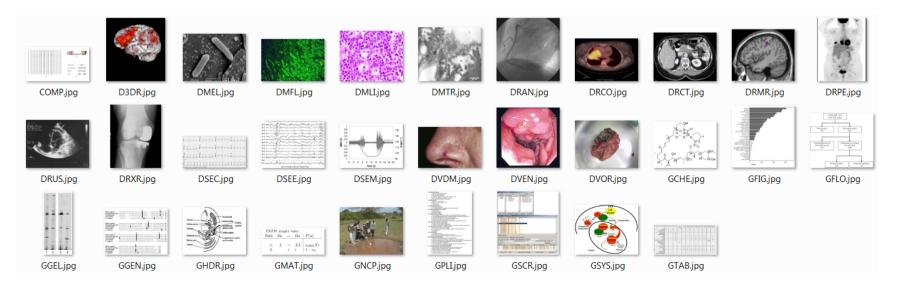
Overview

- IBM Multimedia Multi-Lab group @ ImageCLEF 2013
- Modality Classification task
 - -Approaches
 - -Results
- Case-based retrieval task
- Compound Image Segmentation Task
- Conclusions

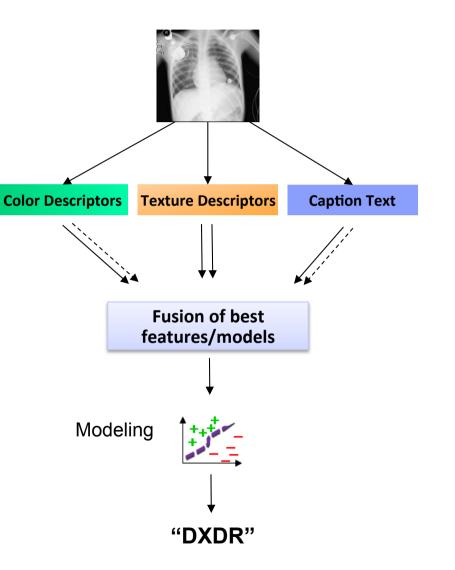
ImageCLEF Medical Imaging Modality Classification Task

- In user-studies, clinicians have indicated that modality is one of the most important filters that they would employ for search
- TASK: given an image, determine to which out of 31 medical and non-medical modalities it belongs
 - □ 31 categories (x-ray, CT scan, ultrasound, etc.)
 - □ Images obtained from 300K real Pubmed articles
 - □ In 2013: 2,845 Training / 2,582 Test images





- Extract several descriptors (features)
 - Visual (for texture, color and edges, at multiple granularities)
 - Textual (from captions, articles)
- Selection of best features based on held out (validation) set performance
- Learn multi-class image classifier on fusion of selected descriptors/ approaches



Global descriptors

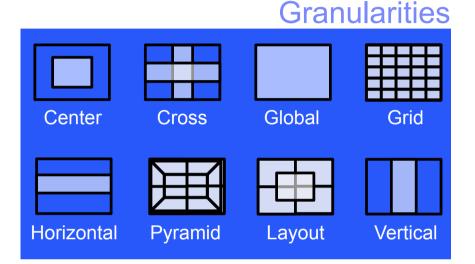
- Color histogram
- Color correlogram
- Edge histogram
- GIST
- Curvelet Texture
- Fourier Orientation
- FourierPolarPyramid
- Thumbnail VectorImage Type, Stats
- texture

Global statistics

Fourier-

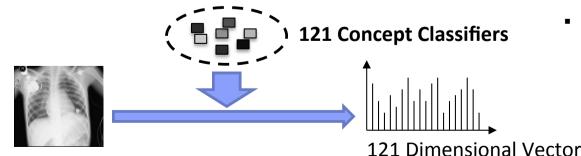
Color

Edge



- Local descriptors
 - LBP histogram : 58 uniform + 1 non-uniform codes
 - SIFT : different interest point detectors, Bag-of-Words codebooks+ soft assignment
 - Color SIFT (RGB-SIFT, HSV-SIFT, C-SIFT)

- Set of 121 medical semantic concept classifiers constructed from training data collected from various sources (IRMA, TCIA, JSRT, Web Crawl)
- Classifiers trained using the IMARS learning framework
 - cover a range of radiological modalities, body regions, views, and some instances of disease pathology
- Classifiers responses concatenated into a 121 dimensional vector for each image



Training Datasets

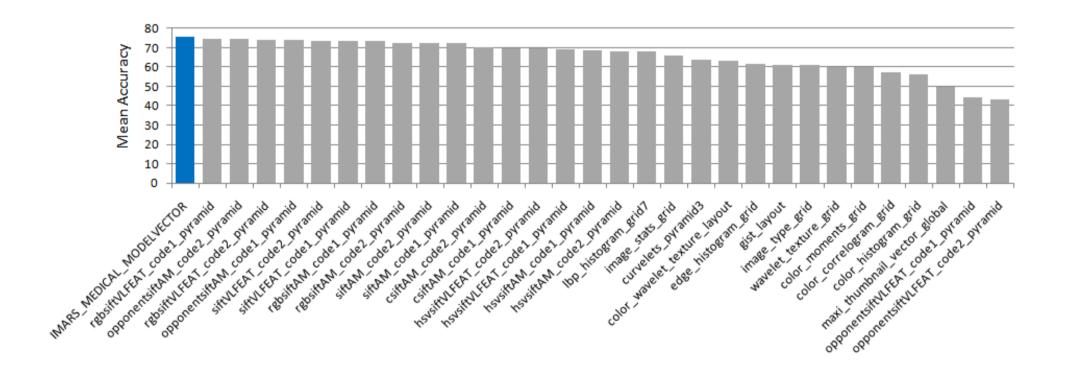
- IRMA
 - X-Ray, Various Regions
 - 15,000 images
 - 193 categories (Modality, Organ, View)
- TCIA

 - 1,000,000+ images (30+ GB) 17+ Categories (Modality, Body Region, View, Disease)
- JRST
 - X-Ray, Chest
 - 247 images, 154 lung cancer, 93 normal
- Cornell Datasets
 - CT. Chest
 - 25,000 images (11 GB)
- Web Crawl
 - 7,600 images
 - 49 categories (Modality, Organ, View, Disease)
- Cardiac Atlas (TBA) Over 3,000 cases over decades.

Modality Classification Task – Visual Descriptors

Mean Accuracy measured on official Test Set

Medical Semantic Model Vector is the Best individual descriptor



Modality Classification Task – Textual Analysis

Modality Tailored Keywords

- Representation
 - Over 400 text patterns (full words, fragments of words, or multi-word phrases)
 - Vocabulary terms hand selected by perusing roughly half of captions in the training set
 - Between 2 and 51 patterns selected for each modality, then combined into one big feature list
 - Related phrases such as *fluorescent*, *immunofluorescence*, and *Alexafuor* merged to variabilized patterns such as *fluor*
 - Asterisks at the front and/or back match an arbitrary number of characters up to the first token delimiter
 - Patterns with all capital letters were only matched to text that was fully capitalized

Modeling

- The text-based classier built on top of this representation generates a likelihood score for each modality based on the presence or absence of a number of key words.
- The number of hits (or an absence of a hit) for each term is weighted by a pseudo-probablistic model derived from the known modalities of the training examples.
- Conditional probability of seeing a term given a particular modality is divided by that term's background probability.

Fragments of term list

- Pattern syntax
 - Can have variable (*) front and/or back but not middle
 - All capital term must be all capitals in text to match
- Complete list
 - Not segregated by modality (all lumped together)
 - Over 400 terms (best if no repeats)

COMP

each panel* plots Images f

DMFL

fluor
flour
immunostain*
spectral confocal micro*

DMLI

peripheral blood smear dark field HE H&E H & E

DRMR

MRI magnetic resonance T1* gadolinium

DVDM

skin derm* psori* papul* melanoma*

GGEN

sequence
align*
amino-acid*
codon

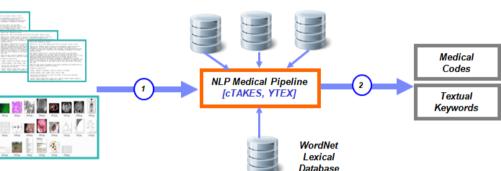
Modality Classification Task – Textual Analysis

75000 Medical

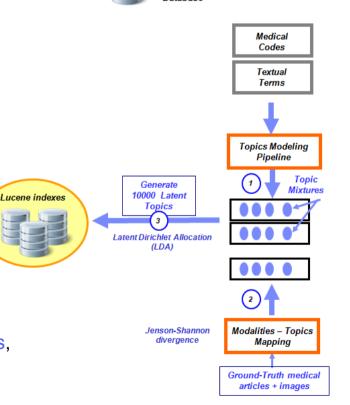
articles and

300000 images

- Representation
 - Terms from two types of Ontologies
 - General lexical ontology (WordNet)
 - Medical specific domains medical knowledge-bases
- Modeling
 - NLP pipeline that consist of
 - WordNet lexical relations
 - Clinical Text Analysis and Knowledge Extraction System (cTAKES) and theYale cTAKES
 - Word-sense disambiguation and sliding window based part-of-speech to identify
 - · relationships among words in the medical context
 - types of clinical named entities such as drugs, diseases,...
 - Lucene indexing on Articles Titles, Abstracts and Image Captions, TF-IDF weight
 - Modality classification based on modality search



UMLS SNOMED-CT RxNorm

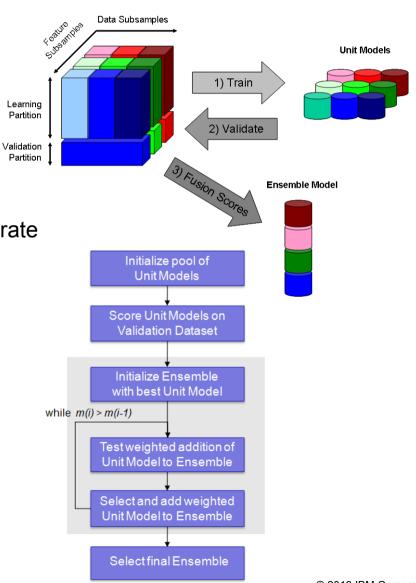


Modality Classification Task - Modeling and Fusion Strategies

- IMARS MODELING
- Two level SVM + Kernel Approximation
- Meta Classifiers
- Early (Kernel) and Late Fusion

Modality Classification Task – IMARS Modeling

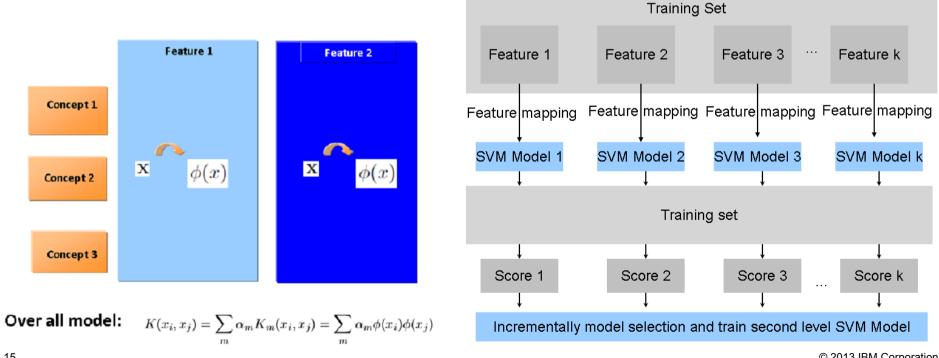
- Train collection of Unit Models on various subsets of data, image granularities, and features
- Each Unit Model on its own is "weak"
 highly under-sampled entity
- Collection of Unit Models can be "strong" – cover most of the data/feature space
- Forward model selection Fusion strategy to generate strong Ensemble Classifier
- 1 Vs All classifiers learned for each class
- Max pooling used for multiclass classification



Training Data

Modality Classification Task – Two level SVM + **Kernel Approximation**

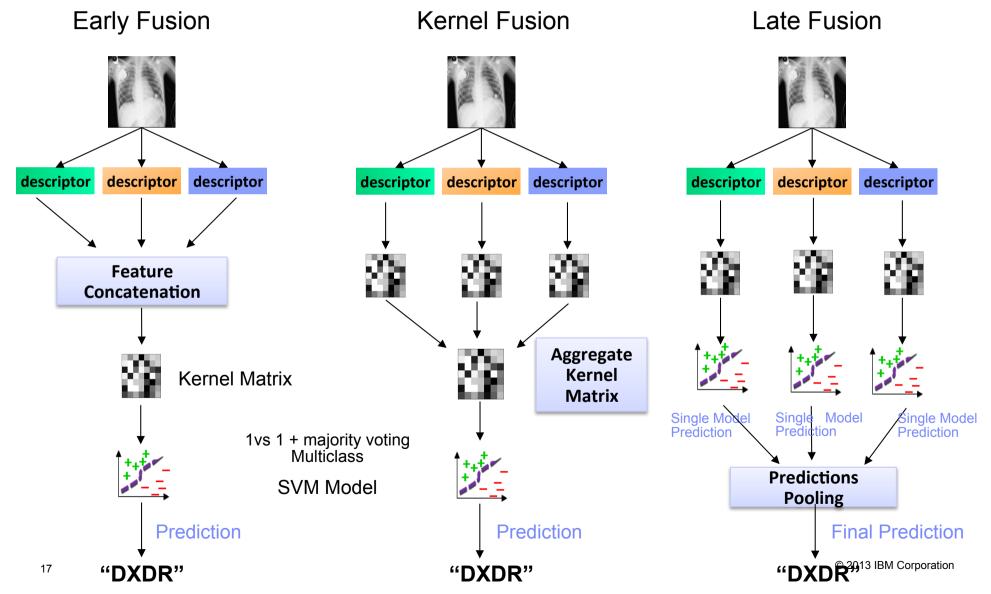
- Motivated by the success of "deep-learning", we make traditional SVM one layer deeper
- Traditional nonlinear kernel evaluation is very expensive, so we use kernel approximation to speed up the process
- 100% training accuracy and 81.05% (12 features) and 81.23% (24 features) for validation accuracy



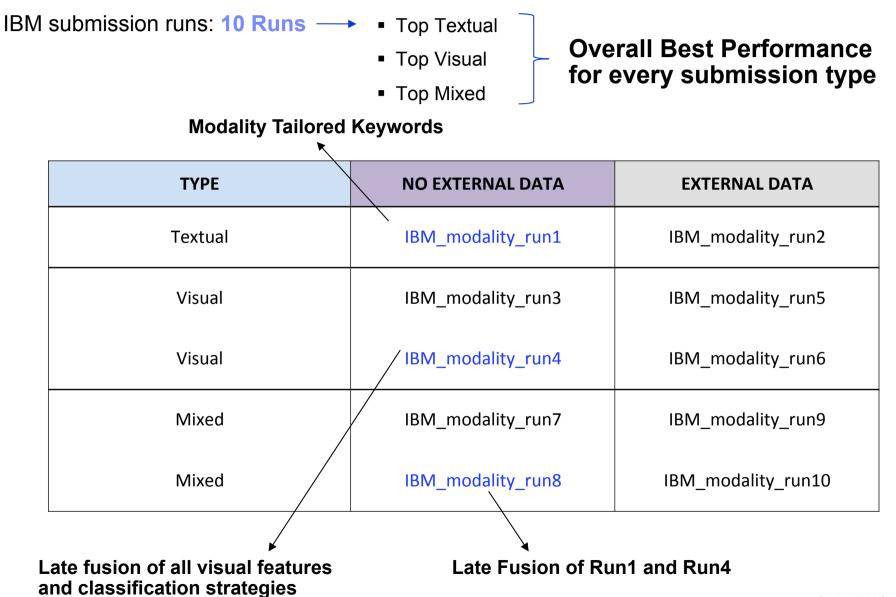
Modality Classification Task – Meta Classifiers

- Meta-learning¹ is a strategy to learn from learned knowledge
- Another level of supervised learning for combining the results of existing fusion models
- Collaboration model to combine the fusion models predictions
- INPUT: vector of different IMARS Ensemble models scores on top of visual and textual descriptions
- Learning algorithms tested:
 - Decision Tree
 - SVM (RBF Kernel, Poly kernel, Normalized Poly kernel and Puk kernel)
 - Random Forest
 - Logistic Model Tree (LMT)
 - Naive Bayesian
 - 1. Kumari, D.M.U.R.G.P.: A study of meta-learning in ensemble based classier. Engineering Science and Technology: An International Journal (ESTIJ) 2(1) (February 2012), pages 36-41

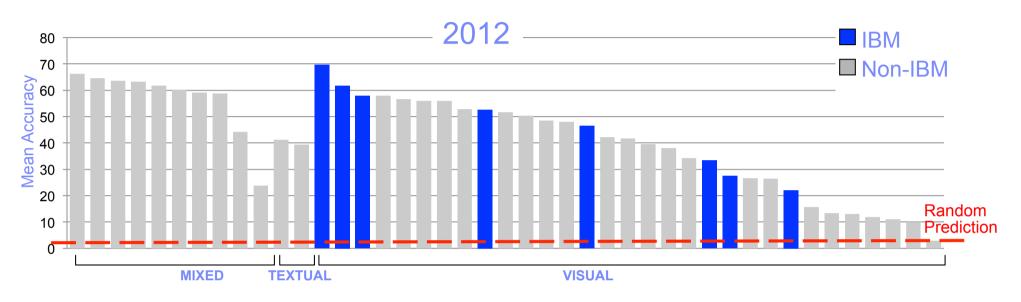
Modality Classification Task – Early/Kernel/Late Fusion

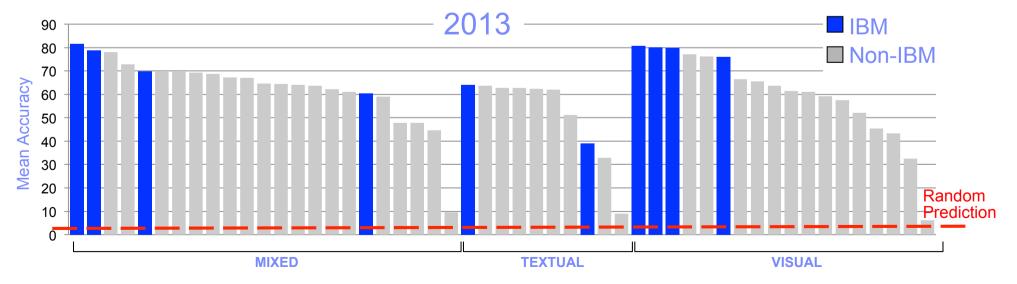


Modality Classification – Official Results



Modality Classification - Results





© 2013 IBM Corporation

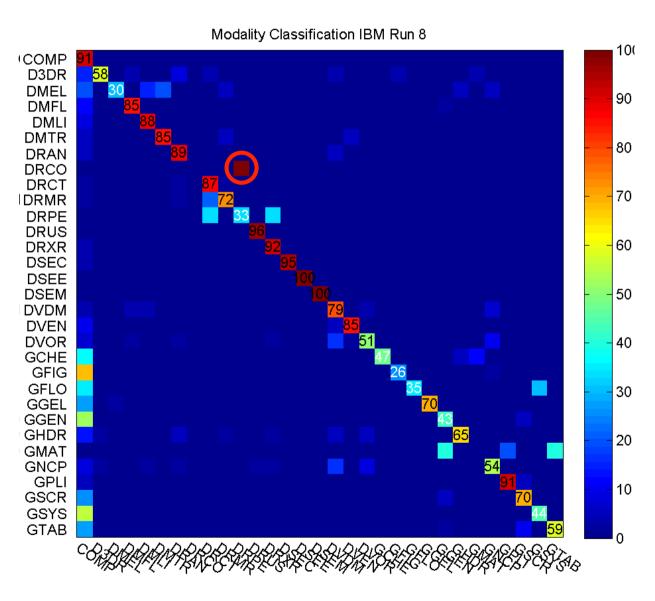
Modality Classification - Results

Textual

- Visual
- Mixed

DRCO – Combined Radiology modalities in one image

Confused with DRPE (PET)



Overview

- IBM Multimedia Multi-Lab group @ ImageCLEF 2013
- Modality Classification task
 - -Approaches
 - -Results
- Case-based retrieval task
- Compound Image Segmentation Task
- Conclusions

Case Based Retrieval

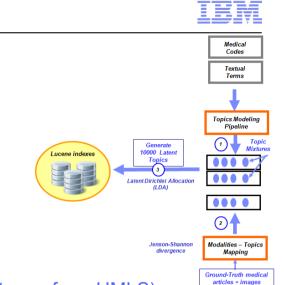
- 35 query cases
- Dataset: 300K Pubmed Articles
- GOAL: return list of 1000 most relevant articles, given a query

APPROACH

- Based on textual Ontology Based Vocabulary (one vocabulary from WordNet, one from UMLS)
- Topic modeling approach to identify meaningful patterns from the medical documents
- LDA to detect the probability distribution P(w|z) over words given topic z
- Each medical document defined as a mixture of latent topics characterized by a multinomial distribution over words.
- Number of topics ranging from 100 to 10,000 topics. Gibbs sampling and Bayesian estimation to assign the multinomial distributions over a set of words to each latent topic
- Separated the topics that are defined for titles, abstracts and captions and grouped the medical documents that share the same topics
- Lucene index with TF-IDF

Results

	Runid	Retrieval type	MAP	P10	P30
	SNUMedinfo9	Textual	0.2429	0.2657	0.1981
WordNet	IBM_run_1	Textual	0.1573	0.1571	0.1057
Fusion	IBM_run_3	Textual	0.1573	0.1943	0.1276
UMLS	IBM_run_2	Textual	0.1476	0.2086	0.1295



Overview

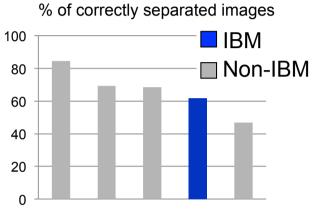
- IBM Multimedia Multi-Lab group @ ImageCLEF 2013
- Modality Classification task
 - -Approaches
 - -Results
- Case-based retrieval task
- Compound Image Segmentation Task
- Conclusions

Compound Image Segmentation Task

Combination of two approaches

- Analysis of connected components in a binarized image
 - Grayscale conversion
 - Binarization
 - Connected Components analysis
 - Geometric based filtering (size, proximity)
- Use of common notation of subfigures using text
 - OCR to recognize isolated components as letters (A, B, C)
 - Analysis of geometric layout of letters

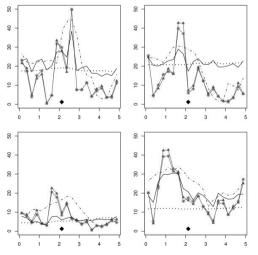
Results



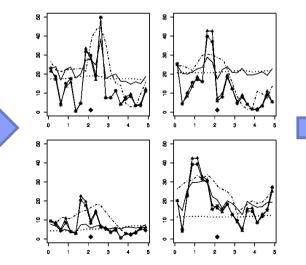
Haifa

Submissions

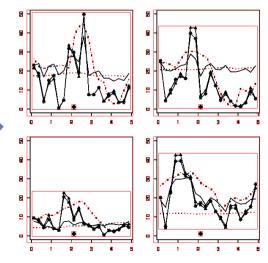
Input Image



Binarization Result



Connected Components



© 2013 IBM Corporation

Overview

- IBM Multimedia Multi-Lab group @ ImageCLEF 2013
- Modality Classification task
 - -Approaches
 - -Results
- Case-based retrieval task
- Compound Image Segmentation Task

Conclusions

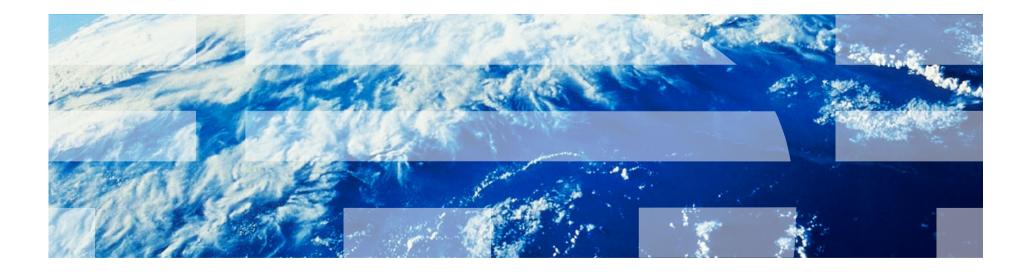
Conclusions

- Semantic Model Vector best single performing feature
- Combination/fusion of different visual and textual based representations, as well as learning frameworks
- Leverage combination of different sources for textual search/classification
 - Modality tailored extracted lexicon
 - -General lexical ontology (WordNet) and
 - Medical specific domains medical knowledge-bases
- Future directions
 - Improve combination of complementary information from Visual and Textual domains

Mani Abedini and Rahil Garnavi	- Australia
Amir Geva and Asaf Tzadok	- Haifa
Liangliang Cao, Noel Codella, Jonathan H. Connell, Michele Merler, Quoc-Bao Nguyen, Sharathchandra U. Pankanti and John R. Smith	- TJ Watson

Thank you!

Questions?



Modality Classification – Results 2012

Confusion Matrix

Better Performance

Red Diagonal

- Limited Training Data
- Extended Training Data
 - Reduced confusion
 - Still confused categories:

System diagram vs. Flowchart

