



- Background
- · Related Works
- Proposed Methods
  - Application of Diversity
  - Evaluation of Diversity
- Conclusion



# Background

- · Traditional IR system
  - Employ independent ranking approach to rank documents in order of relevance to queries
  - Very successful, such as Google, Bing, Yahoo etc.
  - Suitable where relevant documents are very few, and high recall is required

#### But

 Ignore contents of documents already ranked in the search results.



#### Background (Continue)

- In some situations, inappropriate
  - Many relevant documents containing similar information
    - · Results might be very similar to each other
  - User queries
    - · Related to broad search topics
      - Ex: topic: London
      - Weather, Transport, People, Travel, Big Ben
    - Have multiple distinct meaning
      - Ex: query: Chelsea
      - Chelsea UK, Chelsea Clinton, Chelsea FC



# Background (Continue)

### Search results need to be diverse?

- Novelty in ranking
  - Highly duplicate information within document in ranking
- Ambiguity of Search Query
  - Broad topics given query
  - Equivocal query

# Objective

Retrieve as diverse results as possible

Charles L.A. Clarke, Maheedhar Kolla, Gordon V. Cormack, Olga Vechtomova, Azin Ashkan, Stefan B uttcher, and Ian MacKinnon. Novelty and diversity in information retrieval evaluation. In SIGIR '08



#### Outline

- Background
- · Related Works
- Proposed Methods
  - Application of Diversity
  - Evaluation of Diversity
- Conclusion



#### Related works

- Explicit re-ranking functions with tunable parameter
  - Maximal Marginal Relevance (MMR), Harmonic measure, Risk Minimisation, Portfolio theory

$$MMR_{J+1} \equiv \underset{x_i \in I \setminus J}{\operatorname{argmax}} [\lambda S(x_i; q) + (1 - \lambda) D(x_i; (x_1, ...x_J))]$$

- · Subtopic retrieval measures
  - S-recall, S-precision, S-MRR, α-nDCG etc.

$$CR@k = \frac{\left| \cup_{i=1}^{k} subtopics(d_i) \right|}{n_Q}$$





### Related works: ImageClef 2009, Photo Retrieval task

- Create a test collection and define clusters based on analysing the distribution of query variations.
- More accurately specify diversity based on user information needs.



- •The clusters of topic, "Beckham", defined according to ImageClef 2009
- Four dimensions, i.e. anchor persons (topic), genre, location, time
- •Some documents falls into clusters overlapping two dimensions, i.e. "David Beckham 2009"



### Related Work (Continue)

- How to effectively develop diversity algorithms?
- How to evaluate the results from the combination of varied dimensions in diversity?
- Current widely used evaluation measures account for subtopics in a single dimension of diversity.
- Diversity should depends on application, user context, information needs. Ex: product search, sport journalist, magazine editor



- Background
- Related Works
- · Proposed Methods
  - Application of Diversity
  - Evaluation of Diversity
- Conclusion



# **Application of Diversity**

- Intuition
  - Separately promote diversity based on predefined dimensions
  - Cover as many dimensions as possible
  - User centred approach, taking into account the context and information needs of users
- Solutions
  - Visually present results, separated into different viewpoint according to dimensions
  - Fuse results by considering which dimensions are important to users and show in a single ranking.



### Application of Diversity (Continue)

|           | $\alpha_1$ -Topic (2) |                  | $\alpha_2$ -Location (3) |                  |                  | $\alpha_3$ -Genre (1) |                  |              |
|-----------|-----------------------|------------------|--------------------------|------------------|------------------|-----------------------|------------------|--------------|
| Documents | $C_{\alpha_1,1}$      | $C_{\alpha_1,2}$ | $C_{\alpha_2,1}$         | $C_{\alpha_2,2}$ | $C_{\alpha_2,3}$ | $C_{\alpha_3,1}$      | $C_{\alpha_3,2}$ | Total Scores |
| $x_1$     | X                     |                  |                          |                  | X                |                       | X                | 6            |
| $x_2$     |                       | X                |                          | X                |                  |                       |                  | 5            |
| $x_3$     |                       |                  | $\mathbf{X}$             |                  |                  |                       |                  | 3            |
| $x_4$     |                       |                  |                          |                  | X                | X                     |                  | 1            |
| $x_5$     | X                     |                  |                          |                  |                  |                       |                  | 0            |

- Assume that documents which fit into multiple subtopics from different dimensions are more important
- Documents fall into a particular subtopic where no other document exists.
- Weight of each dimensions is pre-defined according to different search domains



# Application of Diversity (Continue)

 Dimension coverage scores, for example, can be treated as a graded diversity value that will be added to dissimilarity value, such as in MMR function.

$$MMR_{J+1} \equiv \underset{x_i \in I \setminus J}{\operatorname{argmax}} [\lambda S(x_i; q) + (1 - \lambda)(D(x_i; (x_1, ..., x_J)) + \alpha(x_i; q))]$$



- Background
- Related Works
- Proposed Methods
  - Application of Diversity
  - Evaluation of Diversity
- Conclusion



### **Evaluation of Diversity**

 Suggest to evaluate systems by separately considering clusters from the same dimensions

$$CR_{\alpha_a;q}@k = \frac{\left| \bigcup_{i=1}^k subtopics(d_i) \right|}{n_Q}$$

 Then, evaluate overall performance of systems by average sum of S-recall from possible dimensions related to query, including weight specified by search domain or user context.

$$CR_{total;q}@k = \frac{1}{A}\sum_{a=1}^{A}w_{\alpha_a}\cdot (CR_{\alpha_a;q}@k)$$



- Background
- · Related Works
- Proposed Methods
  - Application of Diversity
  - Evaluation of Diversity
- Conclusion



### Conclusion

- Propose important aspects needed to be considered in produce document diversity in ranking
- Many research challenges needed to be solved in different dimensions of diversity
- Need to specify the desirable level of granularity of dimensions in different context.

