

Bird Identification using Deep Learning Techniques

Presentation by Elias Sprengel

University: ETH Zürich

Group : Data Analytics Lab

http://da.inf.ethz.ch

Outline

- 1 Quick overview of our approach
- 2 BirdCLEF competition results
- 3 Dealing with the dataset
 - 3.1 Pre-processing
 - 3.2 Data Augmentation
- 4 Conclusion and Outlook

Overview

- Convolutional neural network (CNN)
 - Five convolutional / max-pooling layers, one dense layer.
 - Employing centering, batch normalization and drop-out.
- Trained on a big dataset (24'607 audio recordings, 999 bird species).
 - Pre-processed data to make it more consistent.
 - Augmented data to avoid over-fitting.
 - Roughly 35 millions weights, trained for a week (GPU).
- Fine-tuning of super parameters paid off.
 - First place in the 2016 BirdCLEF challenge.

ETH zürich

Contest Results

Contest Results [Submissions]

- "Run 1" was an early submission (no fine tuning of parameters).
 - Shows how important it is, to get all the parameters right.
- "Run 2" and "Run 3" were the same architecture but "Run 2" was trained on resized spectrograms.
 - Results are very close (0.536 and 0.522 official MAP scores) but not resizing seems a bit better.
- "Run 4" was just the average of Run 2 and 3 (Ensemble).
 - Suggests that boosting/bagging of CNNs could improve the performance of the system even further.
- Overall, very high scores when targeting foreground species, but slightly lower scores when considering background species as well.

Pre-Processing [Overview]

- To understand contest results, we need to understand the system.
- Pre-Processing in short: We compute the spectrogram (short-time Fourier transform) of the sound file use image to train CNN.
- Two main obstacles:
 - The quality of the recordings varies drastically:
 - Some files contain no audible bird, other contain multiple birds singing at the same time.
 - A lot of background noise.
 - Different sound file lengths:
 - 30 files in the dataset are shorter than 0.5 seconds, others are as long as 45 minutes.

Pre-Processing [Noise/Signal Separation]

- To remove unnecessary information, split sound file into a signal and noise part.
 - Heuristic, inspired by Lasseck (2013), that extracts segments where at least one bird is audible.

Pre-Processing [Noise/Signal Separation]

- Benefits:
 - Helps the CNN focus on the important parts.
 - Noise part can be used later as a background-noise augmentation method.
- Possible Drawbacks:
 - Can create artefacts in the spectrogram.
 - The CNN seems to handle these very well (we create even more in the data augmentation phase without problems).
 - Can miss less audible birds.
 - Might be one reason why our scores drop when also considering, less audible, background species.

Pre-Processing [Chunks]

- Second issue was the varying length of the sound files (different widths of the spectrograms).
- Solved by splitting each spectrogram into chunks (fixed-length) and padding the last chunk with zeros.
 - We removed the noise part \rightarrow no "empy" chunks.
 - While testing: Multiple predictions from the CNN (for each chunk)
 - \rightarrow average them to create a more robust prediction.
 - Tried other techniques to combine predictions, none of them worked better.
 - Chunk length of 3 seconds was optimal.

Data Augmentation

- Not a lot of samples (average 25 samples per class)
 - \rightarrow Data Augmentation is super important.
- Time invariant: shift in time!
- Add noise part from other sound files.
 - Great because, eventually, the networks gets to see every bird sound combined with every possible background variation.
- Mix files that have the same class assigned (Takahashi et al. 2016).
 - Class label should stay the same, adding files is equivalent to having multiple birds sing/call at the same time.
 - Helps the CNN to see more relevant patterns at once
 - ightarrow faster convergence.

Augmentation

- Augmentation and Drop-Out are the key ingredients to train on a small dataset.
- \bullet Apply the augmentation every time \rightarrow never show the same example twice.
 - Exception: Show the true value (without augmentation) every so often (here, 1/3 of the cases).
- Combine multiple background-noises (we add three backgroundnoise samples on top of the signal sample) to increase diversity even further.

Conclusion

- We are able to train a CNN (35 million weights) without over-fitting.
 - Works well, even though we have only 25 samples per class.
 - When trained/tested with only 50 random species (1'250 sound files), the network reached a validation accuracy over 90%.
 - Without the use of any external dataset.
 - Without using any meta data values.
- Shows the power of CNNs, even for small datasets (not only bird) identification).
 - Requires a lot of care when fine-tuning super parameters as well as good pre-processing and data augmentation methods.

Outlook

- Lots of meta data (Season, Time, Location).
 - Build a model for each region, time, ...
 - CNN reaches higher scores when the number of bird species is low (see tests on 50 bird species).
- Use ensembles (bagging/boosting).
 - Contest results showed potential (simple average of two predictions performed better).

Outlook

- Need to incorporate background species (multi-label).
 - Problem: Pre-processing can remove background species, augmentation methods train the network to ignore everything in the background.
 - One solution: Incorporating background species in training (loss) function (not done for contest submissions).
 - Alternatively, train two CNNs, one for foreground- the other for background-species.

• Would also help dealing with sound-scape recordings.

Final words

- Some of the ideas might help advance other fields.
 - Example: Acoustic event recognition.
- Showed the power of pre-processing and data augmentation methods.
 - Especially when the number of samples is low and the number of bird species is high (Amazonas acts as the worst case scenario).
- Scores on sound-scape recordings should improve with updated loss function and separate networks, targeting only background species.
 - Even easier if training set would include any examples.

Thank you

- That's all for now. Thank you for your attention.
- Feel free to ask questions, not about birds though. I can not recognize a single species myself.
- Come to my poster and challenge my results. E.g. How do you compare the performance of two networks?

²Publication: http://ceur-ws.org/Vol-1609/16090547.pdf ³Image from: http://www.acuteaday.com/blog/tag/fuzzy-bird/ data analytics lab

References

Lasseck, M. (2013). Bird song classification in field recordings: winning solution for nips4b 2013 competition. In Proc. of int. symp. Neural Information Scaled for Bioacoustics, sabiod. org/nips4b, joint to NIPS; Nevada, pp. 176-181.

Takahashi, N.; Gygli, M.; Pfister, B. and Van Gool, L. (2016). Deep convolutional neural networks and data augmentation for acoustic event detection. arXiv preprint arXiv:1604.07160.

