

Transfer Learning with Self-Supervised Vision Transformer for Large-Scale Plant Identification

Mingle Xu^{1,2}, Sook Yoon³, Yongchae Jeong¹, Jaesu Lee⁴ and Dong Sun Park^{1,2}

Jeonbuk National University, South Korea Core Research Institute of Intelligent Robots Multimedia Lab Under Prof. Park and Prof. Yoon Mingle Xu Sep 8, 2022 Bologna, Italy

Road Map

- A glimpse of PlantCLEF2022 challenge
- Our analysis of PlantCLEF2022 dataset
- Our strategy and results
- Extra experiments
- Summary

A glimpse of PlantCLEF2022

1 Global-scale plant identification.

Trusted: 80k classes, 2.9M images Web: 57k classes, 1.1M images

2 Observation-level image classification.

Testing dataset: 26,868 observations with 55,306 images.

Figure 4: Six observations of testing dataset in PlantCLEF2022. One observation refers to an actual plant and we can take multiple images for single observation. The PlantCLEF2022 challenge requires

3 Evaluation metric: MA-MRR

 $MA - MRR = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{O_n} \sum_{i=1}^{O_n} \frac{1}{rank_i},$

Class 1 Score 1 Class 2 Score 2

Class 30 Score 30

A few-shot learning (FSL) task.

- PlantCLEF2022
 - Trusted: ~36 image/per class, 80k classes, 2.9M images
 - Web: ~19 image/per class, 57k classes, 1.1M images

- ImageNet-1k: ~1281 image/per class
- Flowers-102: 40-258 image/per class
- Places: >5k image/per class

Goëau, H., Bonnet, P. and Joly, A., 2022. Overview of PlantCLEF 2022: Image-based plant identification at global scale. Working Notes of CLEF, pp.1526-1539.

Huge image variations.

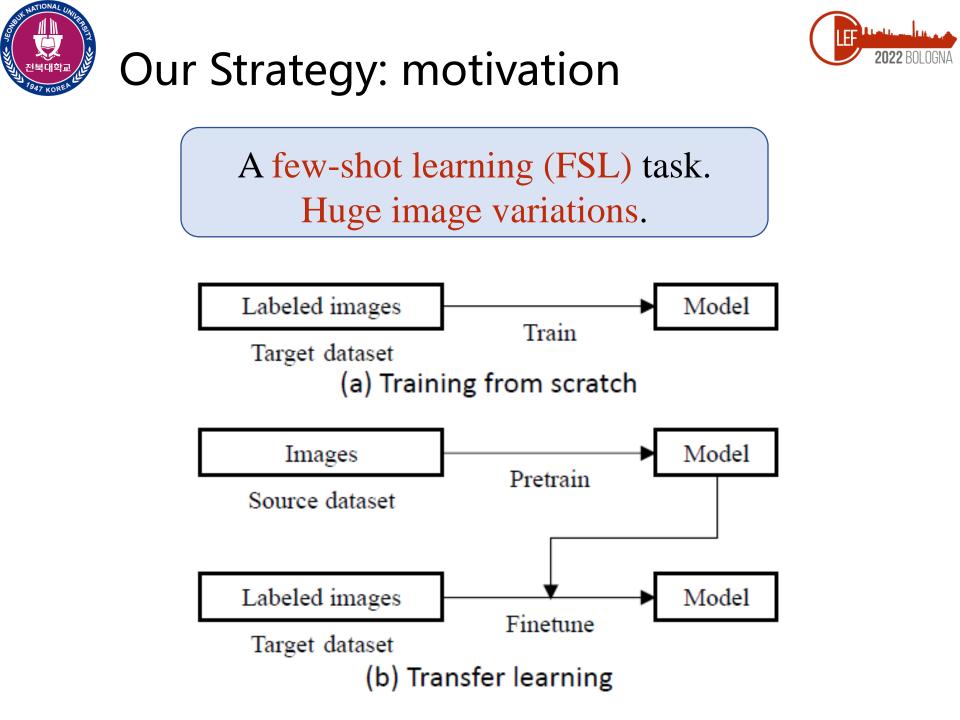

Background, plant organ, color, illumination, viewpoint, scale, ...

Figure 2: Images of Cycas armstrongii Miq species from PlantCLEF2022 training dataset. The images from the same species are heterogeneous in background, viewpoint, and size.

Figure 3: Images of Aralia nudicaulis L. species from PlantCLEF2022 training dataset. The images from the same plant species are heterogeneous in background, illumination, and color.

Our Strategy: motivation

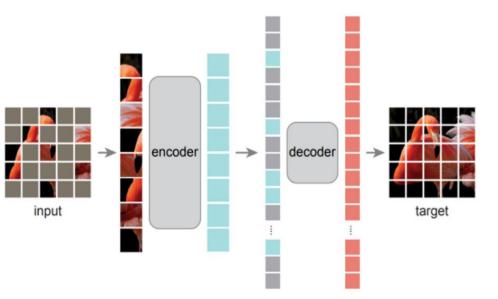
A few-shot learning (FSL) task. Huge image variations.

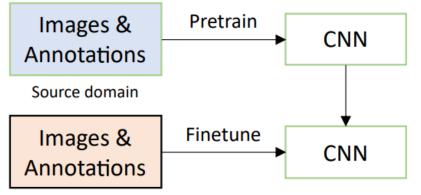
Transfer learning

Better accuracy in ImageNet, higher transfer accuracy.

If the source dataset is far from the target dataset, supervised loss-based transfer accuracy may be low.

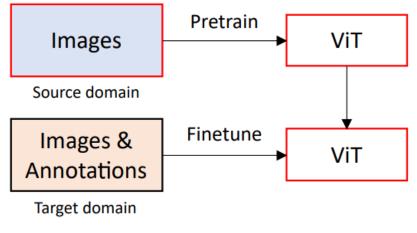
Kornblith, Simon, Jonathon Shlens, and Quoc V. Le. "Do better imagenet models transfer better?." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019. Kolesnikov, Alexander, et al. "Big transfer (bit): General visual representation learning." European conference on computer vision. Springer, Cham, 2020. Wu, Zhirong, et al. "Unsupervised feature learning via non-parametric instance discrimination." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.





MAE (masked autoencoder)

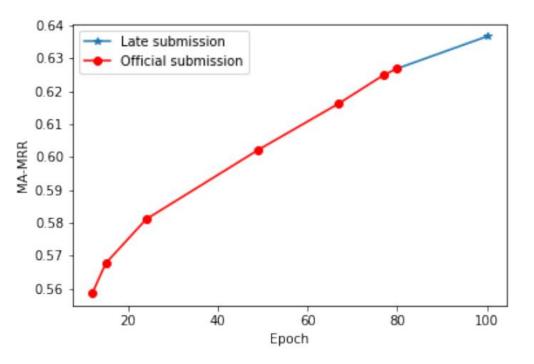
High accuracy (ViT-based)Self-supervised loss


 $\mathcal{L} = ||input - target||$

Target domain

(a) Popular strategy with supervised CNN

(b) Our strategy with Self-supervised ViT


He, K., Chen, X., Xie, S., Li, Y., Dollár, P. and Girshick, R., 2022. Masked autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 16000-16009).

Our strategy is simple but effective. Huge computation. 4 RTX 3090 GPUs, ~ 20 days 100 epochs. <u>Core Research Institute of Intelligent Robots</u> Nation Research Foundation (NRF)

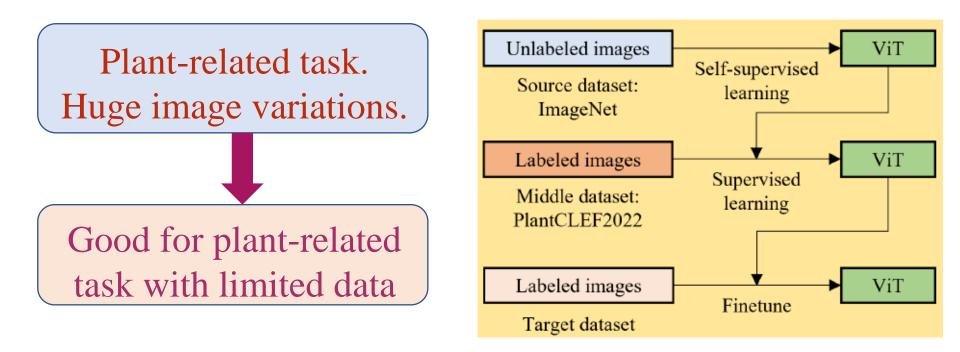
Team	MA-MRR
Ours	0.62692
Second place	0.60781
Third place	0.51043
Fourth place	0.46010

Our Strategy for Observation-Level

Observation-level recognition is one way to make deep learning-based models robust with high performance.

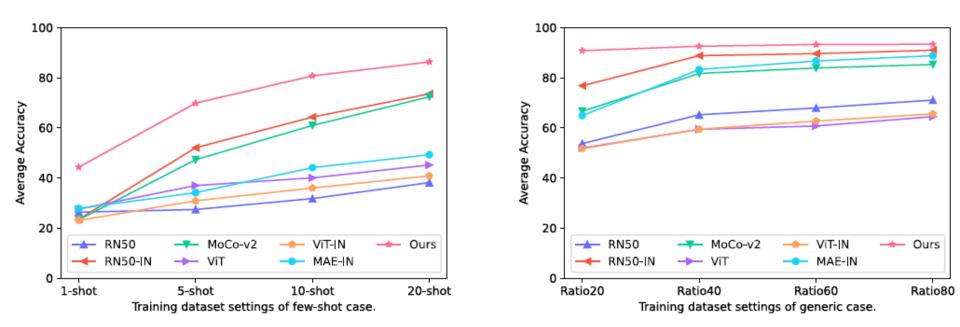
Observation-level classification. Testing dataset: <u>26,868</u> observations with <u>55,306</u> images.

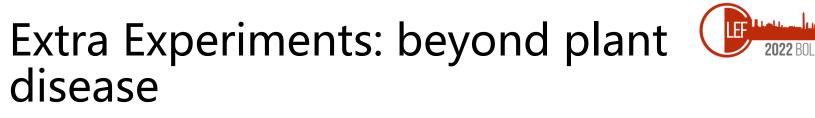
Observation-level strategy: Single-random. Single-highest. Multi-sorted.


Epoch	Single-highest	Multi-sorted
80	0.62692	No
100	0.63668	0.64079

A 0.68	B 0.85		0.45	B 0.23
B 0.24	C 0.05	F	0.30	G 0.12
	Single-high	nest	B 0.85	
	2	10.50	C 0.05	
			B 0.85	
ed	Multi-sorte	ed.	A 0.68	

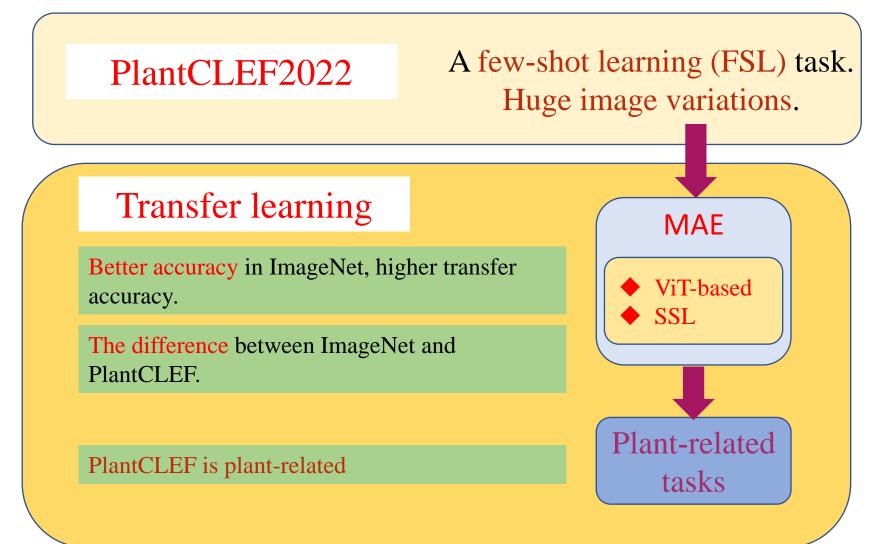
Extra Experiments


Disease recognition: 12 datasets
Growth stage recognition: 1 dataset
Weed species recognition: 1 dataset



Extra Experiments: Plant disease

	1-shot	5-shot	10-shot	20-shot	Ratio20	Ratio40	Ratio60	Ratio80
RN50	26.33	27.38	31.75	38.13	53.71	65.19	67.91	71.07
RN50-IN	23.46	52.03	64.28	73.53	76.77	88.78	89.58	90.97
MoCo-v2	23.28	47.27	60.93	72.38	66.58	81.68	83.84	85.28
ViT	27.56	36.96	40.01	45.14	51.93	59.40	60.71	64.46
ViT-IN	23.02	30.87	35.94	40.83	51.64	59.42	62.67	65.53
MAE	27.81	34.11	44.08	49.26	64.90	83.23	86.65	88.76
Ours	44.28	69.83	80.73	86.29	90.79	92.55	93.23	93.34


Our pretrained model is helpful for other plant-related tasks.

	1-shot	5-shot	10-shot	20-shot	Ratio20	Ratio40	Ratio60	Ratio80
RN50	20.50	21.75	26.45	35.95	39.90	68.90	66.90	78.25
RN50-IN	45.55	75.95	87.90	87.15	60.85	98.00	98.35	98.55
MoCo-v2	45.65	70.25	84.65	86.05	66.90	96.45	96.20	97.50
ViT	32.70	39.90	44.30	51.45	56.25	65.65	75.40	80.90
ViT-IN	27.20	33.35	43.10	45.25	55.05	68.30	75.50	82.35
MAE	17.45	41.45	59.50	59.20	85.20	97.80	98.35	98.75
Ours	73.90	97.60	97.55	97.85	99.8 0	99.35	98.80	99.7 0

Thank You

Email: <u>xml@jbnu.ac.kr</u> <u>Public pretrained model and code: GitHub</u> Mingle Xu