Medical classification

Medical compound figure separation and multi-label classification task

Alba G. Seco de Herrera
Stefano Bromuri
ImageCLEF 2015

- Four tasks offered:
 - image annotation
 - medical classification
 - medical clustering
 - liver CT annotation
Medical images
Medical images

• Provided crucial information
 • Diagnosis, treatment planning…
• Produced in hospitals in ever-increasing numbers
• 30% of the global digital storage
• Made available via biomedical publications
A woman in her mid-30s presented with dyspnea and hemoptysis. CT scan revealed a cystic mass in the right lower lobe. Before she received treatment, she developed right arm weakness and aphasia. She was treated, but four years later suffered another stroke. Follow-up CT scan showed multiple new cystic lesions.
Compound figures

• ~40% of the figures in PubMed Central

• CBIR systems should **distinguish** subfigures
Past editions

• 11th ImageCLEFmed edition
• Figure classification subtask since 2010
• Compound figure separation subtask in 2013
2015 Subtasks

- Compound figure detection
- Compound figure separation
- Multi-label classification
- Subfigure classification
Compound figure detection

• To **identify** if a figure is compound or not
Compound figure separation

• To separate the compound figures into subfigures
Multi-label classification

• To label compound figures with each of the modalities of the subfigures
Hierarchy

Modality Classification for subfigures

Diagnostic images
- Radiology
 - Ultrasound
 - Magnetic Resonance
 - Computerized Tomography
 - X-Ray, 2D radiography
 - Angiography
 - PET
 - Combined modalities in one image
- Visible light photography
 - Dermatology, skin
 - Endoscopy
 - Other organs
- Microscopy
 - Light microscopy
 - Electron microscopy
 - Transmission microscopy
 - Fluorescence microscopy
- Printed signals, waves
 - Electroencephalography
 - Electrocardiography
 - Electromyography

Generic biomedical illustrations
- Tables and forms
- Program listing
- Statistical figures, graphs, charts
- Screenshots
- Flowcharts
- System overviews
- Gene sequence
- Chromatography, gel
- Chemical structure
- Mathematics, formula
- Non-clinical photos
- Hand-drawn sketches
Subfigure classification

• To classify subfigures into the 30 classes
Datasets

• ImageCLEFmed 2015
 • 20,867 figures
 • distributed in training and test sets
• Subset of PubMed Central
 • over 1.7 million images of over 650,000 articles (2014)
Dataset by subtasks

- Compound figure detection
 - full dataset: 20,867 figures
- Compound figure separation
 - subset containing 6,784
- Multi-label classification
 - subset containing 1,568
- Subfigure classification
 - 6,776 subfigures
Compound figures and subfigures

• 1,568 figures are:
 • multi-labeled
 • separated into subfigures
• Figure ID:
 • “1297-9686-42-10-3”
• Subfigures IDs:
 • “1297-9686-42-10-3-1”, “1297-9686-42-10-3-2”, ..., “1297-9686-42-10-3-4”
GT generation

• Iterative process:
 1) Automatic data generation
 2) Crowdsourcing data verification and labeled
 3) Manual correction
Evaluation

• Compound figure separation
 – Same method than in 2013

![Diagram showing compound figure separation with scores 3/3 pts, score=1.0; 1/3 pts, score=0.3; 3/5 pts, score=0.6]
Evaluation

• Compound figure detection
 – Accuracy

• Multi-label classification
 – Hamming loss

• Subfigure classification
 – Accuracy
Participation

• Over 70 groups registered
• 8 groups from 4 continents submitted results
• 40 runs submitted
Results: compound figure detection

- **Multimodal** approached achieves better results
- **Border or peak region** detection and connected component analysis are used

<table>
<thead>
<tr>
<th>Group</th>
<th>Run type</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>FHDO BCSG</td>
<td>mixed</td>
<td>85.39</td>
</tr>
<tr>
<td>FHDO BCSG</td>
<td>mixed</td>
<td>83.88</td>
</tr>
<tr>
<td>FHDO BCSG</td>
<td>mixed</td>
<td>80.07</td>
</tr>
<tr>
<td>FHDO BCSG</td>
<td>mixed</td>
<td>78.32</td>
</tr>
<tr>
<td>FHDO BCSG</td>
<td>textual</td>
<td>78.34</td>
</tr>
<tr>
<td>CIS UDEL</td>
<td>visual</td>
<td>82.82</td>
</tr>
<tr>
<td>FHDO BCSG</td>
<td>visual</td>
<td>72.51</td>
</tr>
</tbody>
</table>
Results: compound figure separation

• NLM manually selects “stitched” figures or with gap
• AAUITEC applies line detection
• Only visual techniques are applied

<table>
<thead>
<tr>
<th>Group</th>
<th>Run type</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLM</td>
<td>visual</td>
<td>84.64</td>
</tr>
<tr>
<td>NLM</td>
<td>visual</td>
<td>79.85</td>
</tr>
<tr>
<td>AAUITEC</td>
<td>visual</td>
<td>49.40</td>
</tr>
<tr>
<td>AAUITEC</td>
<td>visual</td>
<td>35.48</td>
</tr>
<tr>
<td>AAUITEC</td>
<td>visual</td>
<td>30.22</td>
</tr>
</tbody>
</table>
Results: multi-label classification

- No standard multi-label techniques
- **Only visual techniques are applied**

<table>
<thead>
<tr>
<th>Group</th>
<th>Hamming Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>MindLAB</td>
<td>0.0500</td>
</tr>
<tr>
<td>IIS</td>
<td>0.0671</td>
</tr>
<tr>
<td>MindLAB</td>
<td>0.0674</td>
</tr>
<tr>
<td>IIS</td>
<td>0.0674</td>
</tr>
<tr>
<td>IIS</td>
<td>0.0675</td>
</tr>
<tr>
<td>IIS</td>
<td>0.0678</td>
</tr>
<tr>
<td>IIS</td>
<td>0.0680</td>
</tr>
<tr>
<td>IIS</td>
<td>0.0696</td>
</tr>
<tr>
<td>IIS</td>
<td>0.0700</td>
</tr>
<tr>
<td>IIS</td>
<td>0.0710</td>
</tr>
<tr>
<td>IIS</td>
<td>0.0785</td>
</tr>
<tr>
<td>IIS</td>
<td>0.0817</td>
</tr>
</tbody>
</table>
Results: subfigure classification

- Multimodal approach achieves better results

<table>
<thead>
<tr>
<th>Group</th>
<th>Run type</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>FHDO BCSG</td>
<td>mixed</td>
<td>67.60</td>
</tr>
<tr>
<td>FHDO BCSG</td>
<td>mixed</td>
<td>67.24</td>
</tr>
<tr>
<td>FHDO BCSG</td>
<td>mixed</td>
<td>66.48</td>
</tr>
<tr>
<td>FHDO BCSG</td>
<td>mixed</td>
<td>66.44</td>
</tr>
<tr>
<td>FHDO BCSG</td>
<td>mixed</td>
<td>65.99</td>
</tr>
<tr>
<td>FHDO BCSG</td>
<td>mixed</td>
<td>64.34</td>
</tr>
<tr>
<td>FHDO BCSG</td>
<td>textual</td>
<td>60.91</td>
</tr>
<tr>
<td>FHDO BCSG</td>
<td>visual</td>
<td>60.91</td>
</tr>
<tr>
<td>CMTECH</td>
<td>visual</td>
<td>52.98</td>
</tr>
<tr>
<td>CMTECH</td>
<td>visual</td>
<td>48.61</td>
</tr>
<tr>
<td>BMET</td>
<td>visual</td>
<td>45.63</td>
</tr>
<tr>
<td>BMET</td>
<td>visual</td>
<td>45.00</td>
</tr>
<tr>
<td>BMET</td>
<td>visual</td>
<td>44.34</td>
</tr>
<tr>
<td>BMET</td>
<td>visual</td>
<td>43.62</td>
</tr>
<tr>
<td>BMET</td>
<td>visual</td>
<td>37.56</td>
</tr>
<tr>
<td>BMET</td>
<td>visual</td>
<td>37.56</td>
</tr>
</tbody>
</table>
Main tendencies

• Little use of textual information
• Border detection commonly used
• New approached for multi-label classification
• More participants in the subfigure classification task
Conclusions

• Participants present a **variety** of techniques

• **Multimodal** approaches achieve better results

• **Optimization** is needed to improve results

• More “stitched” figures are needed in the provided database
Thank you for your attention!!!

Questions?

http://imageclef.org/2015/medical

albagarcia@nih.gov