Overview of BirdCLEF 2020

Bird Sound Recognition in Complex Acoustic Environments

Stefan Kahl | Center for Conservation Bioacoustics | Cornell Lab of Ornithology | Cornell University

Introduction

Passive acoustic monitoring is a cornerstone of the assessment of ecosystem health.

The improvement of automated assessment systems has the potential to have a transformative impact on global biodiversity monitoring.

→ Involve the scientific community

Introduction

The BirdCLEF challenge evaluates the state-of-the-art of audio-based bird identification systems at a very large scale.

The goal is to design, train and apply an automated detection system that can reliably recognize bird sounds in diverse soundscape recordings.

Large scale?

- Multiple hundreds of species covering three continents
- Tens of thousands of audio recordings
- Hundreds of hours of annotated test data

BirdCLEF is the largest evaluation campaign focusing on avian biodiversity monitoring.

Soundscapes?

Focal recordings

- High signal-to-noise-ratio
- Often non-overlapping vocalizations of a
- Single bird species

Soundscapes?

Soundscape recordings

- Low signal-to-noise-ratio
- Often overlapping vocalizations of
- Multiple bird species
- High levels of anthropogenic sounds

Focal vs. soundscape

Photo: Phil Kahler | Audio: Russ Wigh (XC135705)

Focal vs. soundscape

Photo: Phil Kahler | Audio: Center for Conservation Bioacoustics

Task

■ Train a detection system on focal recordings only

Apply the detection system to soundscape data

Return a ranked list of detected species for each 5-second interval

Task

Example results:

```
49845;00:00:00-00:00:05;compau;0.85555845
49845;00:00:10-00:00:15;compau;0.87857926
49845;00:00:10-00:00:15;lobher;0.8531503
49845;00:00:15-00:00:20;lobher;0.8800533
49845;00:00:25-00:00:20;grepot1;0.8581267
```

Evaluation uses ranking metrics (rmAP and cmAP)

Training data

Xeno-canto:

- 960 species from South and North America and Europe
- ~950 hours across ~70,000 focal recordings

eBird:

- Year-round frequency data
- Based on checklists for each recording location

Participants were <u>not</u> allowed to use other than the provided audio and metadata.

xeno-canto

eBird

Test data

- 153 soundscapes of 10 minute duration recorded at 4 sites (25.5 hours total)
- Up to 8 species vocalizing at the same time (1.3 on average)

Peru USA USA Germany

Participants

■ 69 teams registered on aicrowd.com

4 of them submitted runs

Engaged discussion in the forum

Use of baseline repository

Results

Deep artificial neural networks only

Spectrograms as input

Established architectures and custom designs (neural architecture search)

Augmentation and training follow best practices

Results

Results

Site	Best score (cmAP)	Species per 5-second interval
High-Sierra Nevada, USA	0.33	0.48
Hesse, Germany	0.21	1.77
Ithaca, USA	0.18	0.73
Inkaterra Reserva, Peru	0.07	2.05

Detection performance vs. soundscape complexity

Lessons learned

- DNNs are the go-to tool for bird sound recognition
- Participants struggled with the amount of data
- Publicly available code repositories are worth the effort
- Results leave considerable room for improvements

Outlook

Habitat loss and the destruction of critical environmental niches pose a serious threat to many species.

Biodiversity assessments may only be possible for archived records of long destroyed areas.

Thank you!

xeno-canto

