Overview of the PlantCLEF 2020 Task

Cross-domain plant classification (from herbariums to field photos)

Hervé Goëau1,2, Alexis Joly2, Pierre Bonnet1

1 Cirad, Umr AMAP, Montpellier, France
2 Inria, Zenith team, LIRMM, Montpellier, France
nowadays automated systems perform well in **temperate regions**
- deep learning
- big data

Top1 PlantCLEF 2018: 0,88
nowadays automated systems perform well in **temperate regions**
- deep learning
- big data

...but poorly in **tropical regions**:

Top1 PlantCLEF 2018: 0.88

Top1 PlantCLEF 2019: 0.25

Plant biodiversity long tail distribution
Data deficient tropical countries

- remote isolated areas
- plant in canopy
- many species in a genus
- very small sp.
- But potentially millions of underexploited digitized herbarium sheets collected over centuries
A cross domain classification task

One **training** sample in domain of **herbariums**

One **test** sample in domain of **field photos**

An “easy” example

- brownish, dry and matt content VS shiny green leaves
- but the "obovate" shapes and the nervation should match both domains

Unonopsis stipitata Diels
A cross domain classification task

One **training** sample in domain of **herbariums**

One **test** sample in domain of **field photos**

- global view vs close-up
- dry fruits vs immature fruits

Inga acrocephala Steud.
A cross domain classification task

One **training** sample in domain of **herbariums**

One **test** sample in domain of **field photos**

A difficult example

- two branches with leaves and fruit(s)
- but flattened vs 3D perspective (side view of the fruit), light
- strips of scotch tape, several textual annotations, paperclip, envelopes ...

Strychnos cayennensis Krukoff & Barneby
A cross domain classification task

Training samples in domain of herbariums

One **test** sample in domain of **field photos**

A impossible example

- barks are rarely collected in herbariums
- plant observations with several photos of various organs may compensate the lack of information

Bocca prouacensis Aubl.
A cross domain classification task

- State of the art?
 - “classical” CNNs? (ability to represent features in a common space?)
 - vs domain adaptation approaches?

- Performances?
 - Overall?
 - vs genericity on rare species? (on species with only herbarium sheets as training examples)
 - On common species with many training photos (do the herbarium sheets disturb here the performances?)
Dataset

TRAINING SET

- L’HERBIER IRD DE GUYANE
- iDigBio

997 species (French Guiana)
330,752 herbarium sheets
4,482 field photos (375 sp)
354 specimens on both domains

TEST SET

Two world-class experts of the Guyana flora
Tribute to Marie-Françoise “Fanchon” Prévost
Jean-François Molino

638 plant observations related to 3,186 field photos and 408 species

Grid density map of the dataset

External data allowed

- Life
- Encyclopedia of Life
- Bing
- GBIF
- Google
Metric *(primary)*

Mean Reciprocal Rank

\[
\text{MRR} = \frac{1}{|Q|} \sum_{i=1}^{Q} \frac{1}{\text{rank}_i}
\]

\(Q = 638\) plant observations
Mean Reciprocal Rank

\[\text{MRR} = \frac{1}{|Q|} \sum_{i=1}^{Q} \frac{1}{\text{rank}_i} \]

\(Q = 200 \) plant observations related to the most difficult species “in the world”
Participation

<table>
<thead>
<tr>
<th>Finetuned CNNs</th>
<th>Domain Adaptation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImageNet -> Herbarium</td>
<td>ResNet50</td>
</tr>
<tr>
<td>ImageNet -> Herbarium + Photos</td>
<td>Inception-resnet-v2</td>
</tr>
<tr>
<td>ImageNet -> Herbarium -> Photos</td>
<td>inception-v4</td>
</tr>
</tbody>
</table>

- **With or without external data**
- **Auxiliary tasks (self supervision, genus & family classifiers)**
- **Separate data augmentation techniques adapted to each domain**

71 registered teams
7 teams crossed the finish line
49 tested methods
Results:

A difficult task

MRR 2019: 0.376
(same flora, more species, mainly photos in the training set)
Results: “classical” CNNs performed quite poorly
The use of external data with “classical” CNNs did not greatly improve the performances.
Results: “classical” CNNs vs domain adaptation

2 different domain adaptation approaches performed much better than CNNs alone:

- **ITCR PlantNet: Few shot Adversarial Domain Adaptation (FSADA)**
 -> fool a discriminator to learn common feature space

- **Neuon AI: Triplet loss and siamese network**
 -> learn the similarity between herbarium sheets and field photos instead of directly classifying the plant species
Results: overall performances vs genericity

Multi-task: taxonomy + self supervision help significantly

Neuron's method generalizes better to species with few training field photos
Predictions filtered to 1k classes for fair comparison
Conclusions

The most **difficult task** in all PlantCLEF editions

Domain adaptation approaches outperformed “classical” CNNs

Rare species: have to deal with a compromise between **genericity** and overall performance

Common species: herbarium sheets not really profitable for the species with many training photos

-> still searching for an efficient universal technique!

PlantCLEF 2021
Thank you