REGIM (REsearch Group on Intelligent Machines)
University of Sfax
National Engineering School of Sfax (ENIS), Tunisia

REGIMRobvid: Objects and scenes Detection for Robot vision 2013

Amel Ksibi, Boudour Ammar, Anis Ben Ammar, Chokri Ben Amar
and Adel M. Alimi

RobotVision
Outline

- Introduction
- The proposed system
- Experiments and results
- Conclusion
Introduction

- Robotics has a large growth and profound change in scope.
- Visual detection one of the most popular research topics
- Vision playing an important role in robotics
Introduction

- 10 rooms/categories appear in the competition

(a) Hall (b) Professor office (c) Secretary

REGIMRobvid Boudour Ammar University of Sfax-Tunisia
Introduction

- 8 objects can appear in any image of the database

THE PROPOSED SYSTEM

- 2 concepts are used:
 - Object concepts and Scene concepts
- Learn 2 appropriate classifiers multi-classes using visual features and machines learning
- Detect one appropriate location and some objects.
THE PROPOSED SYSTEM

OFF-line

Training dataset

Scene concepts learning

Scene model

Object concepts learning

Object model
THE PROPOSED SYSTEM

Concept learning

1) PHOW features extraction

- Visual images by a Pyramid Histogram of Visual Words (PHOW) which are a variant of dense SIFT descriptors, extracted at multiple scales.

- A dictionary of visual words was first generated by quantizing the SIFT descriptors that capture the local spatial distribution of gradients.
2) Object and scene learning

- train the PEGASOS stochastic gradient descent as a linear SVM classifier

- perform a step of data pre-transforming through computing the homogeneous kernel map that provides a linear representation of a Chi2 kernel.
3) Concept scores estimation

- classify the test image using two obtained models for object and scene detection

- The outputs of each classifier are the concept having the best score and the detection scores vectors.
4) Concept Selection

- **Normalization**
 - discriminate the most representative objects and the most probably detected scene

\[
\text{Vector}[i] = \frac{\text{vector}[i] - \min}{\max - \min}
\]

Where: \(i = 1 \ldots N \)
Scores normalization by each image and each concept
4) Concept Selection

Threshold for concepts selection

The threshold calculated with respect to the distribution of scores of this object in all images in the validation dataset.

\[
\tau = \begin{cases}
\frac{1}{N} \sum_{i=1}^{N} c_i^q \\
\frac{1}{N} \sum_{i=1}^{N} c_i^q + \sigma
\end{cases}
\]

Where:
- \(N\) is the number of images,
- \(c\) is the score of concept \(q\) in image \(i\).
- \(\sigma\) is the standard deviation of all scores for \(N\) images.
4) Concept Selection

- Threshold for concepts selection

- Scene selection
 Threshold is equal to the average of all scores of images according to this scene concept.
Experiments and results

- PHOW features extraction and PEGASOS SVM classifier with normalization and 1 threshold
- PHOW + PEGASOS SVM but with normalization and 2 thresholds

=> Our system ranked 4th, achieving 4638.25 points on this task.
Conclusion

1st Participation of REGIM Lab to Robot Vision

Future considerations

- the process of scene selection needs to be improved, the system will give the result "unknown"
- Visual (RGB) images and depth images generated from 3D cloud points
- Objects tracking
ACKNOWLEDGMENT

The financial support of this work by grants from General Direction of Scientific Research (DGRST), Tunisia, under the ARUB program.
CALL FOR PAPERS

The 2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR‘2013) will be held in Sousse, Tunisia on December 15-17, 2013. ICBR‘2013 is organized by the REGIM-Lab. at the University of Sfax, and technically co-sponsored by the IEEE Robotics & Automation Society.

The robotics field borrows its knowledge from different disciplines: mathematics and logic (formalization, modeling of behaviors), engineering (development of increasingly complex microprocessors, development of new architectures, new sensors, new communication tools, new control systems, etc.), neurosciences (comprehension of the brain, new methods dealing with computational collective intelligence), biology and Natural Science (living observation, bio-inspiration, stigmergy, etc.), psychology (validation of theories in relation to the memory functioning, language, individual and collective behavior, etc.), linguistics (models of interactive language handling), social Sciences (studies of adaptation to environment and to collective works), philosophy (questions related to the thought character).

The aim of ICBR conference is to bring together researchers in automation and behavioral aspects for robotics; it helps us exchange innovative ideas in designing robots and also in applying computational and collective intelligence, and benefit the progress of each research theory and application.

Papers containing original and unpublished works are solicited in all areas of robotics, including (but not limited to) the following:

- Kinematics, Dynamics, and Control
- Sensory Systems and Perception
- Learning and Planning
- Communication and Coordination
- Applications in Humanoid Robotics
- Applications in Space Robotics
- Other applications and applications in healthcare
CALL FOR PARTICIPATION
16 December 2013
Sousse - TUNISIA

Following the great success of RoboComp’2010-11-12, the 4th International Robotics Competition (RoboComp) will be held on December 16, 2013 in Sousse. The competition is organized by the REGIM-Lab. at the University of Sfax, the IEEE Robotics & Automation Society (RAS) Tunisia Chapter, and the Scientific Association for the Support of Research and Technological Innovation (ASARIT).

RoboComp’2013 is jointly organized with the Int. Conf. on Individual and Collective Behaviors in Robotics (ICBR’2013)
http://icbr.regim.org/

RoboComp’2013 aims to promote the development of robotics in Tunisia. It aims also to bring together young researchers, professionals and international robotics experts to exchange ideas and share problem solving strategies pertaining to robotics.

RoboComp’2013 is a global competition in which teams of students and robotics fans compete to solve robotics problems.
Thank you!

boudour.ammar@ieee.org