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Motivation and Aim

* Motivations:
— Users struggle with the ever-increasing quantity of data available to them

— Large amounts of images can be cheaply found and gathered from the
Internet

— Web pages can provide both images and text a more valuable mixed
modality data

e Aim:
— To develop techniques to allow computers to reliably describe images,

localize the different concepts depicted in the images, generate a description
of the scene and retrieve relevant images, using noisy mixed modality data.



ImageCLEF 2016: Tasks Overview

Subtask 1: Image annotation and localization
Subtask 2: Natural language caption generation

Subtask 3: Content selection
Teaser 1: Text illustration (New for 2016)

Details of each task later



ImageCLEF 2016: Dataset

Single noisy dataset of 510K webpages, images + text

Subtasks 1 & 2
— Test dataset € 510K training dataset

Subtask 3
— Training & test datasets taken from 510K dataset

Teaser 1
— 510K dataset split into 310K for training and 200K for testing



Training, development and test data

251 concepts from airplane to bottle to face & arm

— Formed from looking at word co-occurrence in 34M webpages of all English
dictionary words

* Training/test set of 510K images, >20 images per concept

— CNN trained to identify “interesting images” especially for natural sentence
generation

 The development set contained 2000 images.

e Labelled test of 3070 images (subtask1, 2), 450 (subtask 3), both W|th|n
the 510K
* In total: crowd sourced annotation of 5500 images
— BBs of single instances or grouped instances
— Annotations are not exhaustive




Differences to ILSVRC, MS COCO

* The training data is “real”, noisy and mixed modality

* Recognition/natural description generation is based on
images and text articles associated with images

* The test set is 510k (Subtasks 1 & 2)



Image Features

* Pre-computed image features
— Color Histograms
— GIST
— SIFT, C-SIFT, RGB-SIFT and OPPONENT-SIFT - BoW (Pyramid)
— CNN (AlexNet fc7)



Text Features

* Pre-computed text features (from webpages)

— Triplets of<word, search engine, rank>, of how each image was
found.

— Image URL on webpage (might relate to image content)
— The webpage (converted to valid XML)

— <word, score> of nearby text. Scores based on:
e term frequency (TF)
« DOM attributes (title, alt, etc.)
* Spaital distance to image on web page



Participation

e 7 groups, with 50 submitted runs, 7 working notes

CEA LIST: France

CNRS TPT: France — Presentation & Poster
* DUTh: Greece

e |CTisia: China - Presentation

* INAOE: Mexico - Presentation

MRIM-LIG: France - Presentation

UAIC: Romania




Subtask 1: Image Annotation + Localization

* Annotate & localize 251 concepts in 510K images
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Subtask 1: Bounding box annotation
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Subtask 1: Evaluation

* For image localisation, intersection over Union (loU)
between GT and proposed localized concept

* Up to 100 localised Concepts with 100 Confidence based
BBs per image allowed

 The Confidence threshold was increased to provide a mean
average precision (MAP) measure of performance



Subtask 1: Results - Overlap

Table 1: Subtask 1 results.

Group |0% Overlap | 50% Overlap
CEA LIST 0.54 0.378
MRIM-LIG 0.21 0.14

CNRS 0.25 0.11

UAIC 0.003 0.002




0.6

0.5

0.2

0.1

—UAIC

——MRIM-LIG
CNRS
— CEA-LIST

0.1

0.2

0.3

0.4 0.5 0.6
Bounding Box Percentage overlap

0.7

0.8

0.9




Subtask 1: Per Concept

Concept Ave MAP across all Groups % of Occurrence
0.0 BB Overlap | 0.5 BB Overlap | in test images
Ship 0.61 0.57 28.0%
Car 0.62 0.55 25.3%
Airplane 0.60 .55 3.2%

Hair 0.74 0.52 93.0%
Park 0.41 0.52 13.9%
Floor 0.41 0.51 13.4%
Boot 0.43 0.59 4.2%

Sea 0.45 0.49 8.8%
Street 0.54 0.47 18.0%
Face 0.75 0.47 95.7%
Street 0.64 0.45 59.9%

No method managed to localise 38 concepts, these include the
concepts: nut, mushroom, banana, ribbon, planet, milk, orange
fruit and strawberry.



Subtask 1: Best Systems
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Subtask 2: Caption Generation

* Generate image description (510k images)

A boy sitting on a bed in a bedroom.




Awoman in a green shirt is about to put a spoon into a cup of ice-cream.
GOQD: The description describes the main event happening in the picture, and describes the
woman well.

A woman sitting on a red sofa is enjoying her ice-cream.
GOOD: The description describes the main event happening in the picture.

Awoman is smiling.
BAD: Uninformative, does not give enough discriminative information to help others recognize
the image from a collection of similar images.

A woman is on a couch, the ice-cream is in front of a woman, the spoon is above the ice-cream.
BAD: Too literal, other people are not likely to provide such a description.

Nigella Lawson is enjoying ice-cream.

BAD: Avoid referring to people by name. Try to use "person”. "man”, "woman”, "boy", or "giri".
A pretty woman.

BAD: Uninformative, does not help others recognize the image from a collection of similar
images.

Is there at least one person who is the main subject in this image?Yes

A view of a snow-capped mountain against a blue sky, as seen from a green hill.
GOOD: The description describes what is going on in the picture,

A mountain covered in white snow.
GOOD: The description describes the main entity in the picture.

A green field.
BAD: Does not describe the main subject of the picture -- the snow-capped mountain.

A mountain.
BAD: Too short, does not have enough discriminative information to recognize the image from a

collection of similar images.

Whenever | see this picture, | feel like bursting into song!
BAD: Does not describe the content of the picture.

Is there at least one person who is the main subject in this image?No




Subtask 2: Evaluation

e Meteor evaluation metric

* Adapted from Machine Translation



Subtask 2: Results

_ MEAN + STD mmm [CTisia - Key Laboratory of Intelligent

Human 0.3385+0.1556 0.3355 0.0000 1.0000 |nformation Processing, Institute of Computing
Technology, Chinese Academy of Sciences, China

RUC (2015) 0.1875+0.0831 0.1744 0.0201 0.5696

ICTisia 0.1837 £0.0847 0.1711 0.0180 0.5934 UAIC - Faculty of Computer Science, “Alexandru
: Ioan Cuza” University, Romania

Baseline 0.1490+0.0741 0.1364 0.0189 0.5696

(CNN+LSTM) - ' ' '

UAIC 0.0934 £0.0249 0.0915 0.0194 0.2514  [,,,0eCLEF 2015

UAIC (2015) 0.0813 +0.0513 0.0769 0.0142 0.3234 RUC - Multimedia Computing Lab, School of
Information, Renmin University of China

Human upper-bound: One gold standard against others (for same image), repeat and average
Baseline: Stanford NeuralTalk (untuned)



Subtask 2: Systems Overview
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Subtask 3: Content Selection

* Given labelled bounding box input (450 test images), select
the instances most likely to be mentioned by humans in a
description

4] male_child.n.o1
3] blanket.n.o1
2] bed.n.o1




Subtask 3: Evaluation

* Content Selection score (F-score)

bbox instances referenced bbox instances referenced
in gold standard in generated sentence
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* Final score: Average over all test images
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Subtask 3: Results

| MEANFL | MEANPRECISION | MEAN RECALL

Human
DUTh

RUC (2015)
UAIC (2015)
UAIC

Baseline

0.7445 +0.1174
0.5459 + 0.1533
0.5147 £0.2390
0.5030 £0.1775
0.4982 + 0.1782
0.1800 +0.1973

0.7690 + 0.1090
0.4451 £ 0.1695
0.7015 £ 0.3095
0.5095 + 0.1938
0.4597 £ 0.1553
0.1983 £ 0.2003

0.7690 + 0.1090
0.7914 + 0.1960
0.4496 £ 0.2488
0.5547 £0.2415
0.5951 + 0.2592
0.1817 +£0.2227

DUTh - Democritus University of
Thrace, Greece

UAIC - Faculty of Computer Science,
“Alexandru Ioan Cuza” University,
Romania

ImageCLEF 2015:

RUC - Multimedia Computing Lab,
School of Information, Renmin
University of China

Human upper-bound: One gold standard against others (for same image), repeat and average
Baseline: Select random 3 bounding boxes from gold input, connect concept terms with random
prepositions/conjunctions followed by an optional article “the”



Subtask 3: Systems Overview

Content Selection
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Text labels

descriptions (subtask 2).

selecting up to three tuples
(conceptl, verb, concept2).




Teaser task: Text [llustration

* Given a piece of text, select the most reIevant image to illustrate it
(out of 200k test images) e

Weather: winter proper is finally on its way with
snow and ice. Winter proper is finally on its way
with snow, frost, ice and fog forecast for next week.
Wind and rain have blighted the country for weeks
as thousands of homes have flooded and wet and
windy conditions and brought chaos to our roads
and transport systems. There is finally an end to the
downpour in sight, but the change will bring the
wintry conditions which have been held off by the
storms, forecasters predict. Until then the country
is at risk of further flooding as "slow responding
rivers" are hit by further the heavy rain, although
the worst is over. A pensioner today became the ...




Teaser task: Text [llustration

Based on the BreakingNews dataset

— Arnau Ramisa et al. (2016) BreakingNews: Article Annotation by
mage and Text Processing [Arxiv 1603.07141]
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Teaser task: Text [llustration

* 510K dataset contains ~“10K webpage-image pairs from
BreakingNews.

 ‘Webpage’ generated from news text with a template

* Split into 310K for training and 200K for testing (~10K in
test)

e Separate development set (~3K) provided
* Text extracted from 180K test webpages as test input



Teaser task: Evaluation

* Evaluated using Recall @ kth rank position (R@k) of the
ground truth image

* For each 180K test documents, participants provided top
100 ranked images

— Several values of k tested



Teaser task: Results

T it | Rei | rew | Reso | reio

Random chance 0.00 0.01 0.03 0.05
10K (News) 0.02 0.11 0.46 0.80
CEA LIST
180K (Full) 0.18 1.05 3.00 4.51
10K (News) 37.05 78.06 79.74 79.77
INAOE
180K (Full) 28.75 75.48 86.79 87.59

CEA LIST - CEA, LIST, Laboratory of Vision and Content Engineering, France
INAOE - Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Mexico

Results not quite directly comparable because INAOE used the test webpages at test time while CEA LIST did not



Teaser task: Systems Overview
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= g L q g bag
[14] * word2vec (simple or word2vec.
average)




Summary

 Reasonable improvements somewhat driven by newer CNN
models

* New data and challenge for image caption generation
e Different than Flickr30k, ILSVRC or MS COCO
* Also addressed towards NLP community

* The data size and category labels will grow in new editions,
& improve annotation recall levels




