

Overview of the medical task of ImageCLEF 2016

Alba G. Seco de Herrera Stefano Bromuri Roger Schaer Henning Müller

Tasks in ImageCLEF 2016

- Automatic image annotation
- Medical image classification
 - Sub-tasks in compound figure identification, separation, multi-label classification, modality classification and caption prediction
- Handwritten scanned document retrieval
 - New task in 2016

- The medical literature contains large amounts of images
 - The majority are compound figures that require to have subfigures treated separately
- Image content and caption text can be used for the analysis
- Making the compound figure content accessible is the main goal

- More figures for all subtasks
- New subtask
 - Caption prediction: given a medical image, produce a caption associated with the image that is then compared to the real captions

ImageCLEFmed 2016 subtasks

- Compound figure detection
- Compound figure separation
- Multi-label classification
- Subfigure classification
- Caption prediction

Compound figure detection

 To identify if a figure is a compound figure or has a single content

Compound figure separation

To separate the compound figures into subfigures

Multi-label classification

- To label compound figures with each of the modalities of the subfigures
 - Without previously separating them

Image type hierarchy

Subfigure classification

 To classify subfigures into the 30 classes

Caption detection

• To generate a caption that is a close as possible to the real one

aorta_thoracic / tortuous / mild

aorta_thoracic / tortuous

opacity / lung / middle_lobe / right /aorta_thoracic / tortuous

opacity / lung / base / left

calcified_granuloma / lung / middle_lobe / right / multiple

calcified_granuloma / lung / hilum / right

opacity / lung / middle_lobe / right / blood_vessels

calcified_granuloma / lung / middle_lobe / right

input image

airspace_disease / lung / hilum / right / lung / hilum

nodule / lung / hilum / right

thoracic_vertebrae_degenerative / mild

aorta_tortuous / thoracic_vertebrae_degenerative / mild

normal normal

normal normal

- Predicting the caption text based on the image content (and traing data)
 - Using a word similarity metric to evaluate success
 - Can also help to make the image content accessible
 - Training data are available

Datasets

- ImageCLEFmed 2016
 - 26,456 figures
 - Distributed in training and test sets
- Subset of PubMed Central
 - Over 4 million images of over 1,000,000 articles (2016)

- Compound figure detection:
 - Full dataset: 26,456 compound and single figures
- Compound figure separation
 - Subset containing 8,397 compound figures
- Multi-label classification
 - Subset containing 2,651 compound figures
- Subfigure classification
 - 10,942 subfigures of compound figures
- Caption prediction
 - 20,000 diagnostic figures (non-compound)

- 2,651 figures are:
 - Labeled with all subfigure types
 - Separated into subfigures
 - Using Crowdsourcing
- Figure ID:
 - "1297-9686-42-10-3"
- Subfigure IDs:
 - "1297-9686-42-10-3-1", "1297-9686-42-10-3-2",..., "1297-9686-42-10-3-4"

Participation

- Over 72 groups registered
- 8 groups from 4 continents submitted results
- 69 runs submitted

Results: compound figure detection

- Multimodal approaches achieve best results
- Best results using deep convolutional neural networks (CNN)

Group	Run type	Accuracy
DUTIR	mixed	92.70
CIS UDEL	mixed	90.74
CIS UDEL	mixed	90.39
CIS UDEL	mixed	90.39
CIS UDEL	mixed	85.47
CIS UDEL	mixed	69.06
CIS UDEL	mixed	52.25
MLKD	textual	88.13
DUTIR	textual	87.03
DUTIR	textual	86.05
CIS UDEL	textual	85.47
DUTIR	visual	92.01
CIS UDEL	visual	89.64
CIS UDEL	visual	89.29
DIS UDEL	visual	69.82

Results: compound figure separation

- CIS UDEL applied:
 - Connected component analysis
 - Post-processing to avoid over-fragmentation

Group	Run type	Accuracy
CIS UDEL	visual	84.43
CIS UDEL	visual	84.08
CIS UDEL	visual	84.03
CIS UDEL	visual	83.04
CIS UDEL	visual	81.23
CIS UDEL	visual	75.27
CIS UDEL	visual	74.83
CIS UDEL	visual	74.30
CIS UDEL	visual	73.57

Results: multi-label classification

- BMET uses CNN
 and deep learning
- MLKD uses a textual approach with a random forest classifier

Group	Hamming Loss	F-Measure
BMET	0.0131	0.295
BMET	0.0135	0.320
MLKD	0.0294	0.320

Results: compound figure separation

- Multimodal approaches achieve best result
- CNN, feature selection, multiple visual descriptors are used

Group	Run type	Accuracy
BCSG	mixed	88.43
	mixed	
MLKD	textual	72.22
BCSG	textual	58.37
BCSG	visual	85.38
IPL	visual	84.01
BMET	visual	77.55
NWPU	visual	76.38
CIS UDEL	visual	72.46
NovaSearch	visual	65.31
	visual	

- CNNs (convolutional neural networks) are prominent in 2016
- Multimodal approaches achieve generally best results
- Multiple features used for visual classification
- Connected component analysis for figure separation

- Participants present a large variety of techniques
- The trend is towards the use of neural networks
- There were no submissions in the caption prediction subtask
- The subfigure classification subtask was the most popular task

Thank you for your attention!!!

Questions?

http://imageclef.org/2016/medical

albagarcia@nih.gov