Overcoming the Scarcity of Training Data

Hichem SAHBI

CNRS TELECOM ParisTech, University Paris Saclay

ImageCLEF/CLEF 2016 Scalable Concept Image Annotation (subtask 1)

Sep 7th 2016

Introduction

Concept Detection Overcoming Scarcity of Training Data ImageCLEF2016 Results Conclusion

- 2 Concept Detection
- Overcoming Scarcity of Training Data
- ImageCLEF2016 Results
- 5 Conclusion

Visual Category Recognition

Goal : recognize categories (sky, sea, cars, trees, roads, persons,...)

Concept Detection

Concept Localization

Object Class Segmentation

car, building, etc.

Related work : Pascal VOC 05-12, ImageCLEF 04-., ImageNET 09-., MS COCO 14-., etc.

Motivation and Contribution (I)

Existing solutions and limitations

- **Step 1** (proposal suggestions) : sliding windows, pixel-based partitions, segmentation or multi-segmentation generation.
- Step 2 (scoring/classification) : SVM, deep learning+ CRF, MRF, etc.
- Classification is challenging especially for classes with scarce data and high variability.

Transfer Learning

- How to adapt classifiers learned on some tasks (classes) in order to learn other tasks.
- Attribute and deep learning : learn common characteristics among different classes in order to benefit from all the available training data.
- Augmentation : use a priori knowledge to add more data.

Motivation and Contribution (II)

Proposed Solution in this Challenge (2-steps)

- Add more training data by querying the web.
- Once training data collected, **add more labels** by learning statistical dependencies between classes/labels.

Introduction

Concept Detection Overcoming Scarcity of Training Data ImageCLEF2016 Results Conclusion

Overcoming Scarcity of Training Data

ImageCLEF2016 Results

Overcoming Scarcity of Training Data

ImageCLEF2016 Results

Concept Detection with SVMs

We trained "one-versus-all" SVM classifiers for each concept c; we use many random folds (taken from training data) for multiple SVM training and we use these SVMs in order to predict the concepts on image (depending on f_c(x))

$$f_{c}(x) = \sum_{\ell=1}^{N} \mathbb{1}_{\{g_{\ell(x)} \ge 0\}} - \sum_{\ell=1}^{N} \mathbb{1}_{\{g_{\ell(x)} < 0\}}, \quad (N = 10 \text{ in practice})$$
$$g_{\ell}(x) = \sum_{x'} \alpha_{\ell,x'} \mathsf{K}_{x,x'} + b_{\ell}$$

• We used the coefficients of the pre-trained (not fine-tuned) VGG network.

"Chatfield, K. and Simonyan, K. and Vedaldi, A. and Zisserman, A.", Return of the Devil in the Details : Delving Deep into Convolutional Nets, "British Machine Vision Conference", 2014

Kernel Map Evaluation (I)

- \bullet About kernels : $\mathsf{K}_{x,x'},$ when (p.s.d) $\mathsf{K}_{x,x'} = \Phi'_x \Phi_{x'}$
- Linear kernel map : $K_{x,x'} = \langle x, x' \rangle$ (just identity map).
- Polynomial kernel map : $K_{x,x'} = \langle x, x' \rangle^p = \Phi'_x \Phi_{x'}$ with $\Phi_x = x \otimes ... \otimes x$ (*p* times).
- Histogram intersection map : $\mathbf{K}_{x,x'} = \sum_{d=1}^{s} \min(x^d, x'^d)$. Each dimension x^d of x is mapped using

$$\psi(\mathbf{x}^d) = 2^0 + 2^1 + \dots + 2^{k(\mathbf{x}^d)}$$
 $k(\mathbf{x}^d) = \left\lfloor Q \frac{\mathbf{x}^d - \ell_d}{u_d - \ell_d}
ight
brace$

 $\psi(.)$ is a "decimal-to-unary" map; $\psi(x^d)$ is a Q dimensional vector with its $k(x^d)$ first dimensions equal to 1 and the remaining $Q - k(x^d)$ to 0, e.g., with Q = 4, 1 is mapped to 0001, 2 is mapped to 0011, 3 is mapped to 0111, and so on.

Kernel Map Evaluation (II)

Proposition

Given x, x' in \mathcal{X} , for sufficiently large Q, the inner product $\langle \Phi_x, \Phi_{x'} \rangle$, with $\Phi_x = \left(\psi(x^1)' \sqrt{\frac{u_1 - \ell_1}{Q}}, \sqrt{u_1}, \dots, \psi(x^s)' \sqrt{\frac{\ell_s - u_s}{Q}}, \sqrt{u_s} \right)'$, approximates the histogram intersection kernel $\sum_{d=1}^s \min(x^d, x'^d)$.

3 Overcoming Scarcity of Training Data

ImageCLEF2016 Results

Training Set Enrichment (I)

- Internal (ImageCLEF16) Set
 - More than 500k images : with only 2k images being labeled.
- External (2-steps)
 - Augmentation : we use the crawler "googlebot-image", and we collect 42,272 images by querying all the 251 concepts.
 - Label enrichment : using dependency statistics between concepts.

Training Set Enrichment (Step 1) : Augmentation

- We query each concept *c* (in "concept.txt").
- We define V(c) : a set of expansions of c into multiple keywords (morphological, synonyms, translations, compound word definitions with "+" and "|", etc.)

n02691156 airplane.n.01 airplane,aeroplane,plane ["an aircraft that has a fixed wing and is

powered by propellers or jets"]

 $\mathcal{V}(``airplane.n.01'') = \{airplane, aeroplane, plane, aircraft, propellers, wings+engines, jet, avion\}$

- We submit each keyword in \mathcal{V} to googlebot-image crawler.
- No concept localization -> objects are usually centered.

Training Set Enrichment (Step 2) : Label Enrichment

- Still some concepts remain rare.
- To get more images for those concepts, our idea is to transfer the knowledge about the co-occurrence of some labels using a simple principle :
- Given two concepts c and c', if c, c' are highly correlated, then the presence of one of these two concepts in a given training image implies the presence of the other concept.

Training Set Enrichment (Step 2) : Label Enrichment

• To implement this statement, we define

$$\mathbf{C}(c'|c) = \frac{\sum_{i=1}^{N} \mathbf{Y}_{ic} \mathbf{Y}_{ic'}}{\sum_{i=1}^{N} \mathbf{Y}_{ic}}, \qquad c, c' = 1 \dots K,$$

 $\mathbf{Y}_{ic} = 1$ iff c is present into image \mathcal{I}_i and $\mathbf{Y}_{ic} = 0$ otherwise.

- As external images are collected using "individual keywords" as queries, they have a single label per image and cannot be used to learn these co-occurrences (while dev set can be used).
- Labels in the external set are enriched as follows $\forall c, c' \in \{1, \dots, K\}, \forall i \in \{N + 1, \dots, N + N'\} (N' = 42, 272),$ if $\mathbf{Y}_{ic} = 1$ and $\mathbf{C}(c'|c) \geq \sigma$ then $\mathbf{Y}_{ic'} \leftarrow 1$.

2 Concept Detection

Overcoming Scarcity of Training Data

ImageCLEF2016 Results

5 Conclusion

ImageCLEF 2016 Benchmark

• >500k images, 251 categories, only 2k labeled.

• Images are described using VGG deep features.

• Performance measured using MAP based at different percentages of bounding box overlaps.

ImageCLEF 2016 : Submitted Runs

- # submitted runs : 10 based on a combination of 2 criteria
 - Criterion 1 : whether enrichment is used or not (5 strategies).
 - Criterion 2 : whether external or external+internal data are used (2 sets).
 - No bounding box heuristics are considered for this edition.

Enrichment Datasets	No	Yes	Yes	Yes	Yes
		$\sigma = 0.01$	$\sigma = 0.01$	$\sigma = 0.1$	$\sigma = 0.75$
	au = 0.00	au (RA)	au = 8.00	au = 0.00	au=0.00
External	TAB.0.1.res	TAB.0.4.res	TAB.0.4.1.res	TAB.0.3.res	TAB.0.5.res
External					
+ImageCLEF16 (dev)	TAB.1.1.res	TAB.1.4.res	TAB.1.4.1.res	TAB.1.3.res	TAB.1.5.res

c exists in x iff
$$f_c(x) = \sum_{\ell=1}^N \mathbbm{1}_{\{g_{\ell(x)} \ge 0\}} - \sum_{\ell=1}^N \mathbbm{1}_{\{g_{\ell(x)} < 0\}} \ge \tau$$

Hichem SAHBI Overcoming the Scarcity of Training Data

ImageCLEF 2016 : External vs. External+Internal

Overlap Runs	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100 %
External Only											
CNRS/TAB.0.1.res	19.62	15.67	12.01	9.78	8.13	6.73	5.77	4.83	3.86	2.81	1.65
CNRS/TAB.0.5.res	19.39	15.89	12.38	10.08	8.39	6.88	5.90	4.95	3.90	2.75	1.64
CNRS/TAB.0.3.res	17.31	14.27	11.53	9.53	8.00	6.77	5.89	4.93	3.97	2.84	1.81
CNRS/TAB.0.4.res	10.59	7.43	5.71	4.64	3.73	3.05	2.67	2.25	1.87	1.37	0.91
CNRS/TAB.0.4.1.res	10.25	7.12	5.41	4.33	3.48	2.85	2.49	2.10	1.72	1.25	0.82
External + CLEF16 dev											
CNRS/TAB.1.1.res	24.75	21.89	18.32	15.14	12.83	11.11	9.62	7.71	6.13	4.13	2.42
CNRS/TAB.1.5.res	21.53	19.44	16.48	13.66	11.56	9.96	8.66	6.85	5.41	3.38	2.06
CNRS/TAB.1.3.res	16.85	13.72	10.98	9.06	7.58	6.36	5.63	4.74	3.79	2.67	1.64
CNRS/TAB.1.4.res	10.29	7.03	5.06	3.99	3.30	2.70	2.35	2.01	1.67	1.29	0.83
CNRS/TAB.1.4.1.res	9.79	6.55	4.80	3.74	3.09	2.53	2.17	1.91	1.57	1.19	0.74

- combining external data with the ImageCLEF16 dev set provides a clear gain compared to the use of external data only.
- ImageCLEF16 dev set has (possibly) a similar distribution w.r.t ImageCLEF16 test set.
- and this makes it possible to adapt training parameters (SVM weights) to test data.

"TAB.1.1.res" vs. "TAB.1.5.res" Perfs with 0% overlap

• The correlation factor of $c : F_{\sigma}(c) = \sum_{c'=1}^{K} \mathbf{1}_{\{C(c|c') \geq \sigma\}}$.

concepts	$F_{\sigma}(.)$	# initial set	# enriched set	perfs % (before enrichment)	perfs % (after enrichment)
wolf	8	103	1325	2.08	4.55
deer	3	149	149	47.27	50.00
airplane	8	413	644	47.22	48.89
apron	9	173	318	8.00	12.50
bathtub	13	172	2794	8.33	14.29
computer	1	142	142	14.63	17.65
cup	6	80	80	0	13.04
drum	7	369	1405	8.51	16.28
fork	1	150	150	0	4.17
helmet	32	176	1156	11.11	18.80
keyboard	25	177	770	3.70	6.67
kitchen	8	174	433	10.71	17.65
microphone	8	187	769	10.00	21.43
mirror	12	304	8928	2.04	3.39
motorcycle	8	170	340	43.33	75.00
painting	10	121	121	10.53	16.67
piano	7	70	469	7.41	14.29
ramp	17	308	4143	0.82	1.18
shirt	10	188	1098	48.98	58.77
stadium	1	68	68	28.00	35.29
towel	19	148	148	9.09	13.64
tractor	13	280	2219	12.90	15.38
tray	18	91	650	0	10.00
vase	22	171	1134	0	3.03
vest	1	75	75	3.70	7.09
wall	2	79	248	66.67	95.00
mouth	1	227	227	50.00	75.36
foot	11	302	550	12.50	32.76
arm	18	159	2361	61.11	77.94
newspaper	1	163	163	6.67	9.09
book	8	126	126	10.00	12.50
beer	19	141	195	9.09	16.67
ribbon	6	331	331	3.23	10.00
valley	2	313	313	17.74	21.43
male_child	26	75	1152	11.78	20.00

Hichem SAHBI

Overcoming the Scarcity of Training Data

"TAB.1.1.res" vs. "TAB.1.5.res" Perfs with 50% overlap

concepts	$F_{\sigma}(.)$	# initial set	# enriched set	perfs % (before enrichment)	perfs % (after enrichment)
cat	8	173	679	13.64	22.22
deer	3	149	149	21.82	22.92
fish	10	148	1562	6.25	18.18
airplane	8	413	644	40.28	46.67
apron	9	173	318	4.00	12.50
bathtub	13	172	2794	8.33	14.29
bottle	28	115	5489	0	0.45
box	30	90	338	0	3.12
computer	1	142	142	3.66	3.92
cup	6	80	80	0	0.39
drum	7	369	1405	4.26	6.98
helmet	32	176	1156	0	0.85
kitchen	8	174	433	10.71	17.65
motorcycle	8	170	340	43.33	75.00
necktie	9	485	15719	0	0.31
picture	6	236	319	2.17	2.70
pillow	8	297	2023	0	0.90
ramp	17	308	4143	0.82	1.18
scarf	16	151	1018	0.61	1.32
shirt	10	188	1098	12.24	20.18
shoe	8	356	6901	0	0.40
stadium	1	68	68	26.00	35.29
stick	9	232	6042	0	0.27
tractor	13	280	2219	3.23	3.85
train	3	102	102	9.09	9.30
tray	18	91	650	0	10.00
vest	1	75	75	0	1.57
wheel	9	169	753	0	0.56
ear	23	58	593	0	0.38
head	10	378	378	4.94	8.06
book	8	126	126	0	0.51
letter	20	271	4560	0	0.28
valley	2	313	313	9.68	14.29
femalechild	12	79	79	2.30	3.85
male_child	26	75	1152	2.17	5.00

Remarks

- Better concept detection (at 0% overlap) implies better localization (at 50% overlap), even with simple (blind) localization heuristics.
- Clear gain especially for concepts with a high correlation factor $F_{\sigma}(c)$: as these concepts (such as "arm", "shirt", "shoe") co-occur with many other concepts and hence inherit larger training subsets.
- Some concepts even with small correlation factors (such as "apron", "cup") also benefit from the enrichment process, with a relatively smaller gain.
- Concepts which are usually centered in pictures (such as "motorcycle", "kitchen", "shirt") are relatively well localized using our simple blind localization.
- Difficult concepts (such as "cat") get substantial improvement.
- "TAB.1.5.res" is better than "TAB.1.3.res" as the former is more conservative (σ is high).

Best Performing Concepts (at 0% overlap)

Hichem SAHBI Overcoming the Scarcity of Training Data

Best Performing Concepts (at 50% overlap)

Introduction

- 2 Concept Detection
- Overcoming Scarcity of Training Data
- ImageCLEF2016 Results

Conclusion and Extensions

- Submitted runs are based on SVMs built on top of enriched training sets.
- This enrichment makes it possible to share images between concepts and allows us to enhance the performances of concepts with scarce training images.
- Observed results also show that the correlation factor of a given concept has an impact on the resulting performances after enrichment.
- Future extensions : (i) how to make concept localization non-blind and also coupled with concept detection, consider dependency statistics (not only for concepts but also their locations). (ii) How to find the expansion sets V() automatically. (iii) How to use label enrichment as a post-processing step.